Skip to main content
Log in

Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Copper manganese oxides (Cu–Mn oxides) were prepared by coprecipitation method and characterized by several techniques, such as X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and Temperature-programmed reduction (TPR). Catalytic activities of the Cu–Mn oxides were tested by the oxidation of toluene with molecular oxygen in liquid phase and solvent-free conditions. The molar ratio of Cu:Mn in catalyst was optimized to be 1:1 and thus the corresponding crystalline material was designated as Cu1.5Mn1.5O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Thomas R. Raja G. Sankar R.G. Bell (1999) Nature 398 227 Occurrence Handle1:CAS:528:DyaK1MXitVGlur8%3D Occurrence Handle10.1038/18417

    Article  CAS  Google Scholar 

  2. J. Lozar G. Falgayrac A. Savall (2001) Ind. Eng. Chem. Res. 40 6055 Occurrence Handle1:CAS:528:DC%2BD3MXoslSgu7g%3D Occurrence Handle10.1021/ie0102091

    Article  CAS  Google Scholar 

  3. A. Suresh M. Sharma T. Sridhar (2000) Ind. Eng. Chem. Res. 39 3958 Occurrence Handle1:CAS:528:DC%2BD3cXntFentb0%3D Occurrence Handle10.1021/ie0002733

    Article  CAS  Google Scholar 

  4. T. Hirabayashi S. Sakaguchi Y. Ishii (2004) Angew. Chem. Hit. Ed. 43 1120 Occurrence Handle1:CAS:528:DC%2BD2cXitVOqsr0%3D Occurrence Handle10.1002/anie.200352741

    Article  CAS  Google Scholar 

  5. H. Holtz, L. Gardner (Phillips Petroleum Co.), US Pat. 4088823, 1978.

  6. D. Bulushev F. Rainone L. Kiwi-Minsker (2004) Catal. Today 96 195 Occurrence Handle1:CAS:528:DC%2BD2cXnvVOhtLg%3D Occurrence Handle10.1016/j.cattod.2004.06.143

    Article  CAS  Google Scholar 

  7. C. Freitag S. Besselmann E. Löffler W. Grünert F. Rosowski M. Muhler (2004) Catal. Today 91 143 Occurrence Handle10.1016/j.cattod.2004.03.023 Occurrence Handle1:CAS:528:DC%2BD2cXltVCqsb0%3D

    Article  CAS  Google Scholar 

  8. L. Kiwi-Minsker D. Bulushev F. Rainone A. Renken (2002) J. Molec. Catal. A: Chem. 184 223 Occurrence Handle1:CAS:528:DC%2BD38XkvFKns7g%3D Occurrence Handle10.1016/S1381-1169(01)00529-5

    Article  CAS  Google Scholar 

  9. D. Bulushev S. Reshetnikov L. Kiwi-minsker A. Renken (2001) Appl. Catal. A: Gen. 220 31 Occurrence Handle1:CAS:528:DC%2BD3MXnsVSgs78%3D Occurrence Handle10.1016/S0926-860X(01)00701-3

    Article  CAS  Google Scholar 

  10. T. Bastock J. Clark K. Matin B. Trenbirth (2002) Green Chem. 4 615 Occurrence Handle1:CAS:528:DC%2BD38Xpt1Ciu7w%3D Occurrence Handle10.1039/b208427a

    Article  CAS  Google Scholar 

  11. J. Zhu, A. Robertson, and S. Tsang, Chem. Commun. (2002) 2044.

  12. J. Zhu S.C. Tsang (2003) Catal. Today 81 673 Occurrence Handle1:CAS:528:DC%2BD3sXlsVWrtrc%3D Occurrence Handle10.1016/S0920-5861(03)00165-2

    Article  CAS  Google Scholar 

  13. M. Kantam P. Sreekanth K. Rao T. Kumar B. Rao B. Choudary (2002) Catal. Lett. 81 223 Occurrence Handle1:CAS:528:DC%2BD38XlsVeru7g%3D Occurrence Handle10.1023/A:1016537325179

    Article  CAS  Google Scholar 

  14. Y. Yoshino Y. Hayashi T. Iwahama S. Sakaguchi Y. Ishii (1997) J. Org. Chem. 62 6810 Occurrence Handle1:CAS:528:DyaK2sXmtVersro%3D Occurrence Handle10.1021/jo9708147

    Article  CAS  Google Scholar 

  15. Y. Ishii S. Sakaguchi T. Iwahama (2001) Adv. Synth. Catal. 343 393 Occurrence Handle1:CAS:528:DC%2BD3MXmtVWltrs%3D Occurrence Handle10.1002/1615-4169(200107)343:5<393::AID-ADSC393>3.0.CO;2-K

    Article  CAS  Google Scholar 

  16. A. Lamb W. Bray J. Frazer (1920) Ind. Eng. Chem. 12 213 Occurrence Handle10.1021/ie50123a007

    Article  Google Scholar 

  17. A. Mirzaei R. Shaterian M. Habibi G. Hutchings S. Taylor (2003) Appl. Catal. A: Gen. 253 499 Occurrence Handle1:CAS:528:DC%2BD3sXot1Gqurk%3D Occurrence Handle10.1016/S0926-860X(03)00563-5

    Article  CAS  Google Scholar 

  18. H. Jones H. Taylor (1923) J. Phys. Chem. 27 623 Occurrence Handle1:CAS:528:DyaB2cXmsA%3D%3D Occurrence Handle10.1021/j150232a002

    Article  CAS  Google Scholar 

  19. F.S. Stone (1962) Adv. Catal. 5 1 Occurrence Handle10.1016/S0360-0564(08)60285-0

    Article  Google Scholar 

  20. G. Hutchings A. Mirzaei R. Joyner M. Siddiqui S. Taylor (1996) Catal. Lett. 42 21 Occurrence Handle1:CAS:528:DyaK28XntFCktLs%3D Occurrence Handle10.1007/BF00814462

    Article  CAS  Google Scholar 

  21. G. Hutchings A. Mirzaei R. Joyner M. Siddiqul S. Taylor (1998) Appl. Catal. A: Gen. 166 143 Occurrence Handle1:CAS:528:DyaK1cXjsFSnug%3D%3D Occurrence Handle10.1016/S0926-860X(97)00248-2

    Article  CAS  Google Scholar 

  22. S. Kanungo (1979) J. Catal. 58 419 Occurrence Handle1:CAS:528:DyaE1MXkvFOgs70%3D Occurrence Handle10.1016/0021-9517(79)90280-X

    Article  CAS  Google Scholar 

  23. G. Schwab S. Kanungo (1977) J. Phys. Chem. NF. 107 109 Occurrence Handle1:CAS:528:DyaE1cXktlWgurg%3D

    CAS  Google Scholar 

  24. A. Wollner F. Lange H. Schmelz H. Knözinger (1993) Appl. Catal. A: Gen. 94 181 Occurrence Handle10.1016/0926-860X(93)85007-C

    Article  Google Scholar 

  25. F. Wang, G. Yang, W. Zhang, W. Wu and J. Xu, Chem. Commun. (2003) 1172

  26. F. Wang G. Yang W. Zhang W. Wu J. Xu (2004) Adv. Synth. Catal. 346 633 Occurrence Handle1:CAS:528:DC%2BD2cXlt1Ojtr0%3D Occurrence Handle10.1002/adsc.200303226

    Article  CAS  Google Scholar 

  27. G. Qi X. Zheng J. Fei Z. Hou (2001) J. Molec. Catal. A: Chem. 176 195 Occurrence Handle1:CAS:528:DC%2BD3MXnvVSjtL0%3D Occurrence Handle10.1016/S1381-1169(01)00257-6

    Article  CAS  Google Scholar 

  28. I. Spassova M. Khristova D. Panayotov D. Mehandjiev (1999) J. Catal. 185 43 Occurrence Handle1:CAS:528:DyaK1MXktVSls78%3D Occurrence Handle10.1006/jcat.1998.2347

    Article  CAS  Google Scholar 

  29. B. Gillot S. Buguet Kester Etienne (1997) J. Mater. Chem. 7 2513 Occurrence Handle1:CAS:528:DyaK2sXnsFemtr8%3D Occurrence Handle10.1039/a703731g

    Article  CAS  Google Scholar 

  30. Y. Tanaka T. Utaka R. Kikuchi T. Takeguchi K. Sasaki K. Eguchi (2003) J. Catal. 215 271 Occurrence Handle1:CAS:528:DC%2BD3sXjvVCntrc%3D Occurrence Handle10.1016/S0021-9517(03)00024-1

    Article  CAS  Google Scholar 

  31. F. Buciuman F. Patcas T. Hahn (1999) Chem. Eng. Proc. 38 563 Occurrence Handle1:CAS:528:DyaK1MXlvVWmsbc%3D Occurrence Handle10.1016/S0255-2701(99)00053-7

    Article  CAS  Google Scholar 

  32. Y. Tanaka T. Utaka R. Kikuchi K. Sasaki K. Eguchi (2003) Appl. Catal. A: Gen. 242 285 Occurrence Handle10.1016/S0926-860X(02)00529-X Occurrence Handle1:CAS:528:DC%2BD3sXhs1ajtb8%3D

    Article  CAS  Google Scholar 

  33. I. Spasspval D. Mehandjiev (1996) React. Kinet. Catal. Lett. 58 57 Occurrence Handle10.1007/BF02071105

    Article  Google Scholar 

  34. I. Leith M. Howden (1992) Appl. Catal. A: Gen. 37 75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Xu, J., Zhou, L. et al. Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catal Lett 110, 255–260 (2006). https://doi.org/10.1007/s10562-006-0118-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0118-7

Keywords

Navigation