Skip to main content
Log in

Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Without use of any surfactant or oxidant, a series of Co3O4 catalysts have been prepared from cobalt nitrate aqueous solution via a very simple liquid-precipitation method with ammonium acid carbonate followed by calcination at various temperatures. The catalytic performance of the Co3O4 for CO oxidation has been studied with a continuous flowing laboratory microreactor system. The results show that the CO conversion of all the samples can reach 100% at ambient temperature. The catalyst calcined at 300 °C is able to maintain its activity for CO complete oxidation more than 500 min at 25 °C and about 240 min even at −78 °C. High reaction temperature results in a high catalytic stability, while the catalytic stability decreases with further increasing the reaction temperature. Characterizations with X-ray powder diffraction and transmission electron microscopy suggest that all the samples exist as a pure Co3O4 phase with the spinel structure, the samples are apt to aggregate and the specific surface area gradually decreases with increasing the calcination temperature, which directly leads to the decrease of catalytic stability. Furthermore, the amount of active oxygen species measured by CO titration experiments appears to be critical for catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Gardner S.D., Hoflund G.B., Upchurch B.T., Schryer D.R., Kielin E.J., Schryer J. (1991) J. Catal. 129:114

    Article  CAS  Google Scholar 

  2. Lamb A.B., Bray W.C., Frazer J.C.W. (1920) Ind. Eng. Chem. 12:213

    Article  Google Scholar 

  3. Yamaura H., Moriya K., Miura N., Yamazoe N. (2000) Sens. Actuators B 65:39

    Article  Google Scholar 

  4. Funazaki N., Asano Y., Yamashita S., Kobayashi T., Haruta M. (1993) Sens. Actuators B 13–14:536

    Article  Google Scholar 

  5. Tripathi A.K., Gupta N.M., Chatterji U.K., Iyer R.M. (1992) Indian J. Technol. 30:107

    CAS  Google Scholar 

  6. Thormählen P., Fridell E., Cruise N., Skoglundh M., Palmqvist A. (2001) Appl. Catal. B 31:1

    Article  Google Scholar 

  7. Shelef M., McCabe R.W. (2000) Catal. Today 62:35

    Article  CAS  Google Scholar 

  8. Kim D.H., Lim M.S. (2002) Appl. Catal. A 224:27

    Article  CAS  Google Scholar 

  9. Snytniko P.V., Sobyanin V.A., Belyaev V.D., Tsyrulniko P.G., Shitova N.B., Shlyapin D.A. (2003) Appl. Catal. A 239:149

    Article  Google Scholar 

  10. Dong G.L., Wang J.G., Gao Y.B., Chen S.Y. (1999) Catal. Lett. 58:37

    Article  CAS  Google Scholar 

  11. Bi Y.U., Lu G.X. (2003) Appl. Catal. B 41:279

    Article  CAS  Google Scholar 

  12. Bera P., Gayen A., Hegde M.S., Lalla N.P., Spadaro L., Frusteri F., Arena F. (2003) J. Phys. Chem. B 107:6122

    Article  CAS  Google Scholar 

  13. Margitfalvi J.L., Borbáth I., Hegedűs M., Tfirst E., Gőbölös S., Lázár K. (2000) J. Catal. 196:200

    Article  CAS  Google Scholar 

  14. Daniel M.C., Astruc D. Chem. Rev. 104 (2004) 341, and references cited therein

  15. Jia M.L., Shen Y.N., Li C.Y., Bao Z.R.G.T., Sheng S.S. (2005) Catal. Lett. 99:235

    Article  CAS  Google Scholar 

  16. Centeno M.Á., Portales C., Carrizosa I., Odriozola J.A. (2005) Catal. Lett. 102:289

    Article  CAS  Google Scholar 

  17. Jain A., Zhao X., Kjergaard S., Stagg-Williams S.M. (2005) Catal. Lett. 104:191

    Article  CAS  Google Scholar 

  18. Moreau F., Bond G.C. (2006) Catal. Today 114:362

    Article  CAS  Google Scholar 

  19. Moreau F., Bond G.C., Taylor A.O. (2004) Chem. Comm. 1642

  20. Chiang C.W., Wang A.Q., Wan B.Z., Mou C.Y. (2005) J. Phys. Chem. B 109:18042

    Article  CAS  Google Scholar 

  21. Luo M.F., Zhong Y.J., Yuan X.X., Zheng X.M. (1997) Appl. Catal. A 162:121

    Article  CAS  Google Scholar 

  22. Hutchings G.J., Mirzaei A.A., Joyner R.W., Siddiqui M.R.H., Taylor S.H. (1998) Appl. Catal. A 166:143

    Article  CAS  Google Scholar 

  23. S.H. Taylor, G.J. Hutchings, A.A. Mirzaei (1999) Chem. Comm. 1373

  24. Whittle D.M., Mirzaei A.A., Hargreaves J.S.J., Joyner R.W., Kiely C.J., Taylor S.H., Hutchings G.J. (2002) Phys. Chem. Chem. Phys. 4:5915

    Article  CAS  Google Scholar 

  25. Bae C.M., Ko J.B., Kim D.H. (2005) Catal. Comm. 6:507

    Article  CAS  Google Scholar 

  26. Yu Y., Yung F. (1974) J. Catal. 33:108

    Article  Google Scholar 

  27. Jia M.J., Zhang W.X., Tao Y.G., Wang G.Y., Cui X.H., Zhang C.L., Wu T.H. (1999) Chem. J. Chin. Univ. 20:637 (in Chinese)

    CAS  Google Scholar 

  28. Lin H.K., Chiu H.C., Tsai H.C., Chien S.H., Wang C.B. (2003) Catal. Lett. 88:169

    Article  CAS  Google Scholar 

  29. Lin H.K., Wang C.B., Chiu H.C., Chien S.H. (2003) Catal. Lett. 86:63

    Article  CAS  Google Scholar 

  30. Wang C.B., Tang C.W., Gau S.J., Chien S.H. (2005) Catal. Lett. 101:59

    Article  CAS  Google Scholar 

  31. Cunningham D.A.H., Kobayashi T., Kamijo N., Haruta M. (1994) Catal. Lett. 25:257

    Article  CAS  Google Scholar 

  32. Jansson J. (2000) J. Catal. 194:55

    Article  CAS  Google Scholar 

  33. Jansson J., Anders E.C.P., Fridell E., Skoglundh M., Österlund L., Thormählen P., Langer V. (2002) J. Catal. 211:387

    CAS  Google Scholar 

  34. Thormählen P., Skoglundh M., Fridell E., Andersson B.(1999) J. Catal. 188:300

    Article  Google Scholar 

  35. Zheng X.C., Wu S.H., Wang S.P., Wang S.R., Zhang S.M., Huang W.P. (2005) Appl. Catal. A 283:217

    Article  CAS  Google Scholar 

  36. Chen Y.Z., Liaw B.J., Huang C.W. (2006) Appl. Catal. A 302:168

    Article  CAS  Google Scholar 

  37. Krämer M., Schmidt T., Stöwe K., Maier W.F. (2006) Appl. Catal. A 302:257

    Article  Google Scholar 

  38. Drago R.S., Jurczyk K., Singh D.J., Young V. (1995) Appl. Catal. B 6:155

    Article  CAS  Google Scholar 

  39. Steen E.V., Schulz H. (1999) Appl. Catal. A 186:309

    Article  Google Scholar 

  40. Zhang Z.L., Geng H.R., Zheng L.S., Du B. (2005) J. Alloys. Compd. 392:317

    Article  CAS  Google Scholar 

  41. Schmidt-Szałowski K., Krawczyk K., Petryk J. (1998) Appl. Catal. A 175:147

    Article  Google Scholar 

  42. Langford J.I., Wilson A.J.C. (1978) J. Appl. Crystallogr. 11:102

    Article  CAS  Google Scholar 

  43. Gaddsden J.A. (1975) Infrared spectra of minerals and related inorganic compounds. Butterworth, London, p. 44

    Google Scholar 

  44. Spenser C., Schroeder D. (1974) Phys. Rev. B 9:3658

    Article  Google Scholar 

  45. Andrushkevich T., Boreskov G., Popovskii V., Pliasova L., Karakchiev L., Ostankovitch A. (1968) Kinet. Katal. 6:1244

    Google Scholar 

  46. Christoskova St.G., Stoyanova M., Georgieva M., Mehandjiev D. (1999) Mater. Chem. Phys. 60:39

    Article  CAS  Google Scholar 

  47. Singh R.N., Pandey J.P., Singh N.K., Lal B., Chartier P., Koenig J.F. (2000) Electrochim. Acta. 45:1911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Shanxi Natural Science Foundation (grants: 20041017) and Shanxi Scientific & Technological Promoted Project of China (grants: 031099) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Xiang Zhao or Dian-Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YZ., Zhao, YX., Gao, CG. et al. Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation. Catal Lett 116, 136–142 (2007). https://doi.org/10.1007/s10562-007-9099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9099-4

Keywords

Navigation