Skip to main content
Log in

Size Dependent Study of MeOH Decomposition Over Size-selected Pt Nanoparticles Synthesized via Micelle Encapsulation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We present here the size-dependent decomposition of methanol (MeOH) over narrowly distributed Pt nanoparticles supported on nanocrystalline anatase TiO2 powder. Micelle encapsulation has been used to create Pt catalysts with average particle sizes of ∼4, 6, and 8 nm. A packed bed mass flow reactor and mass spectrometry were employed to quantify the catalyst’s activity and selectivity. Among the catalysts tested the smallest nanoparticles showed the best performance including an onset reaction temperature of ∼145 °C. No byproducts such as CO2 or CH4 were observed in the test range of 100–330 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.S. Department of Energy (2003) Basic research needs for solar energy utilization

  2. Norskov JK, Christensen CH (2006) Science 312:1322

    Article  CAS  Google Scholar 

  3. Olah GA (2004) Catal Lett 93:1

    Article  CAS  Google Scholar 

  4. Haruta M, Souma Y (1997) Catal Today 36:1

    Article  CAS  Google Scholar 

  5. Spencer MS (2003) Top Catal 22:135

    Article  CAS  Google Scholar 

  6. Zhang XH, Luo LT, Duan ZH (2005) React Kinet Catal Lett 87:43

    Article  Google Scholar 

  7. Tabatabaei J, Sakakini BH, Waugh KC (2006) Catal Lett 110:77

    Article  CAS  Google Scholar 

  8. Kurtz M, Strunk J, Hinrichsen O, Muhler M, Fink K, Meyer B, Woell C (2005) Angew Chem Int Ed 44:2790

    Article  CAS  Google Scholar 

  9. Wilmer H, Kurtz M, Klementiev KV, Tkachenko OP, Grunert W, Hinrichsen O, Birkner A, Rabe S, Merz K, Driess M, Wöll C, Mühler M (2003) Phys Chem Chem Phys 5:4736

    Article  CAS  Google Scholar 

  10. Sakahara S, Yajima K, Belosludov R, Takami S, Kubo M, Miyamoto A (2002) Appl Surf Sci 189:253

    Article  CAS  Google Scholar 

  11. Lou Y, Maye MM, Han L, Luo J, Zhong CJ (2001) Chem Comm 5:473

    Article  Google Scholar 

  12. Mavrikakis M, Stoltze P, Norskov J, (2000) Catal Lett 64:101

    Article  CAS  Google Scholar 

  13. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  14. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  15. Ono LK, Sudfeld D, Roldan Cuenya B (2006) Surf Sci 600:5041

    Article  CAS  Google Scholar 

  16. Schneider A, Wenderoth M, Engel KJ, Rosentreter MA, Heinrich AJ, Ulbrich RG (1998) Appl Phys A Mat Sci Process 66:S161

    Article  CAS  Google Scholar 

  17. Hinnemann B, Moses PG, Bonde J, Jorgensen KP, Nielsen JH, Horch S, Chorkendorff I, Norskov JK (2005) J Am Chem Soc 127:5308

    Article  CAS  Google Scholar 

  18. Brown JC, Gulari E (2004) Catal Commun 5:431

    Article  CAS  Google Scholar 

  19. Passos FB, Oliveira ER, Mattos LV, Noronhe FB (2006) Catal Lett 110:261

    Article  CAS  Google Scholar 

  20. Jacobs PW, Ribeiro FH, Somorjai GA, Wind SJ (1996) Catal Lett 37:131

    Article  CAS  Google Scholar 

  21. Farrauto RJ, Heck RM (1999) Catal Today 51:351

    Article  CAS  Google Scholar 

  22. Freund HJ, Libuda J, Baumer M, Risse T, Carlsson A (2003) Chem Rec 3:181

    Article  CAS  Google Scholar 

  23. Somorjai GA, McCrea K (2001) Appl Catal A 222:3

    Article  CAS  Google Scholar 

  24. Glass R, Arnold M, Blummel J, Kuller A, Möller M, Spatz JP (2003) Adv Funct Mater 13:569

    Article  CAS  Google Scholar 

  25. Jaramillo TF, Baeck SH, Roldan Cuenya B, McFarland EW (2003) J Am Chem Soc 125:7148

    Article  CAS  Google Scholar 

  26. Roldan Cuenya B, Baeck SH, Jaramillo TF, McFarland EW (2003) J Am Chem Soc 125:12928

    Article  CAS  Google Scholar 

  27. Bond GC, Flamerz S (1989) Appl Catal 46:89

    Article  CAS  Google Scholar 

  28. Duckers K, Bonzel HP (1989) Surf Sci 213:25

    Article  Google Scholar 

  29. Bancroft GM, Adams I, Coatsworth LL, Bennewitz CD, Brown JD, Westwood WD (1975) Anal Chem 47:586

    Article  CAS  Google Scholar 

  30. Kim KS, Winograd N, Davis RE, (1971) J Am Chem Soc 93:6296

    Article  CAS  Google Scholar 

  31. Zhao M, Crooks RM (1999) Adv Mater 11:217

    Article  CAS  Google Scholar 

  32. Silvestre-Albero J, Sepulveda-Escribano A, Rodriguez-Reinoso F, Anderson JA (2004) J Catal 223:179

    Article  CAS  Google Scholar 

  33. Fierro JLG, Palacios JM, Tomas F (1988) Surf Interface Anal 13

  34. Laurent S, Linic S (2006) Phys Rev Lett 97

  35. Bjorneholm O, Federmann F, Fossing F, Möller T (1995) Phys Rev Lett 74:3017

    Article  Google Scholar 

  36. National Research Council (1992) Catalysis looks to the future, Washington DC

  37. Usami Y, Kagawa K, Kawazoe M, Matsumura Y, Sakurai H, Haruta M (1998) Appl Catal A 171:123

    Article  CAS  Google Scholar 

  38. Shen WJ, Matsumura Y (2000) Phys Chem Chem Phys 2:1519

    Article  Google Scholar 

  39. Kapoor MP, Ichihashi Y, Kuraoka K, Shen WJ, Matsumura Y (2003) Catal Lett 88:83

    Article  CAS  Google Scholar 

  40. Matsumura Y, Tanaka K, Tode N, Yazawa T, Haruta M (2000) J Mol Catal A 152:157

    Article  CAS  Google Scholar 

  41. Liu YY, Suzuki K, Hamakawa S, Hayakawa T, Murata K, Ishii T, Kumagai M (2000) Catal Lett 66:205

    Article  CAS  Google Scholar 

  42. Lai X, Goodman DW (2000) J Molec Catal A 162:33

    Article  CAS  Google Scholar 

  43. Antonyuk SN, Lapidus AL, Kazanskii VB, Yakerson VI, Khanumyan AA, Golosman EZ, Nechugovskii AI, Pesin OYu (2000) Kinet Catal 41:831

    Article  Google Scholar 

  44. Men Y, Gnaser H, Zapf R, Hessel V, Ziegler C (2004) Catal Comm 5:671

    Article  CAS  Google Scholar 

  45. Chou J, Franklin NR, Baeck S, Jaramillo TF, McFarland EW (2004) Catal Lett 95:107

    Article  CAS  Google Scholar 

  46. Campbell CT, Peden CHF (2005) Science 309:713

    Article  CAS  Google Scholar 

  47. Esch E, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Science 309:752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the Donors of the American Chemical Society Petroleum Research Fund under Grant PRF-42701-G5 and supplement for minority undergraduate summer research, and the National Science Foundation (NSF-CAREER award, No. 0448491). J. Croy would like to thank Dr. Ahmed Naitabdi and Luis Ono for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Roldan Cuenya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croy, J.R., Mostafa, S., Liu, J. et al. Size Dependent Study of MeOH Decomposition Over Size-selected Pt Nanoparticles Synthesized via Micelle Encapsulation. Catal Lett 118, 1–7 (2007). https://doi.org/10.1007/s10562-007-9162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9162-1

Keywords

Navigation