Skip to main content

Advertisement

Log in

Hydrogen Production from Ethanol Steam Reforming Over Supported Cobalt Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogen production was carried out via ethanol steam reforming over supported cobalt catalysts. Wet incipient impregnation method was used to support cobalt on ZrO2, CeO2 and CeZrO4 followed by pre-reduction with H2 up to 677 °C to attain supported cobalt catalysts. It was found that the non-noble metal based 10 wt.% Co/CeZrO4 is an efficient catalyst to achieve ethanol conversion of 100% and hydrogen yield of 82% (4.9 mol H2/mol ethanol) at 450 °C, which is superior to 0.5 wt.% Rh/Al2O3. The pre-reduction process is required to activate supported cobalt catalysts for high H2 yield of ethanol steam reforming. In addition, support effect is found significant for cobalt during ethanol steam reforming. 10% Co/CeO2 gave high H2 selectivity while suffered low conversion due to the poor thermal stability. In contrast to CeO2, 10 wt.% Co/ZrO2 achieved high conversion while suffered lower H2 yield due to the production of methane. The synergistic effect of ZrO2 and CeO2 to promote high ethanol conversion while suppress methanation was observed when CeZrO4 was used as a support for cobalt. This synergistic effect of CeZrO4 support leads to a high hydrogen yield at low temperature for 10 wt.% Co/CeZrO4 catalyst. Under the high weight hourly space velocity (WHSV) of ethanol (2.5 h−1), the hydrogen yield over 10 wt.% Co/CeZrO4 was found to gradually decrease to 70% of its initial value in 6 h possibly due to the coke formation on the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cropper MAJ, Geiger S, Jollie DM (2004) J Power Sources 131:57–61

    Article  CAS  Google Scholar 

  2. Jacobson MZ, Colella WG, Golden DM (2005) Science 308:1901–1905

    Article  CAS  Google Scholar 

  3. Demirbas A (2007) Prog Energy Combust 33:1–18

    Article  CAS  Google Scholar 

  4. Hamelinck CN, Faaij APC (2006) Energy Policy 34:3268–3283

    Article  Google Scholar 

  5. Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65–139

    Article  CAS  Google Scholar 

  6. Song CS (2002) Catal Today 77:17–49

    Article  CAS  Google Scholar 

  7. Farrauto RJ, Liu Y, Ruettinger W, Ilinich O, Shore L, Giroux T (2007) Catal Rev-Sci Eng 49:141–196

    Article  CAS  Google Scholar 

  8. Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes, 2nd edn. Wiley, Hoboken

    Google Scholar 

  9. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39–49

    Article  CAS  Google Scholar 

  10. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuel 19:2098–2106

    Article  CAS  Google Scholar 

  11. Duan S, Senkan S (2005) Ind Eng Chem Res 44:6381–6386

    Article  CAS  Google Scholar 

  12. Montini T, De Rogatis L, Gombac V, Fornasiero P, Graziani M (2007) Appl Catal B Environ 71:125–134

    Article  CAS  Google Scholar 

  13. Roh HS, Wang Y, King DL, Platon A, Chin YH (2006) Catal Lett 108:15–19

    Article  CAS  Google Scholar 

  14. Roh HS, Platon A, Wang Y, King DL (2006) Catal Lett 110:1–6

    Article  CAS  Google Scholar 

  15. Diagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565–571

    Article  CAS  Google Scholar 

  16. Breen JP, Burch R, Coleman HM (2002) Appl Catal B Environ 39:65–74

    Article  CAS  Google Scholar 

  17. Cavallaro S (2000) Energy Fuel 14:1195–1199

    Article  CAS  Google Scholar 

  18. Idriss H (2004) Platinum Metals Rev 48:105–115

    Article  CAS  Google Scholar 

  19. Chen HL, Liu SH, Ho JJ (2006) J Phys Chem B 110:14816–14823

    Article  CAS  Google Scholar 

  20. Mavrikakis M, Barteau MA (1998) J Mol Catal A Chem 131:135–147

    Article  CAS  Google Scholar 

  21. Mavrikakis M, Doren DJ, Barteau MA (1998) J Phys Chem B 102:394–399

    Article  CAS  Google Scholar 

  22. Dasi NK, Dalai AK, Ranganathan R (2007) Can J Chem Eng 85:92–100

    Article  Google Scholar 

  23. Carrero A, Calles JA, Vizcaino AJ (2007) Appl Catal A Gen 327:82–94

    Article  CAS  Google Scholar 

  24. Homs N, Llorca J, de la Piscina PR (2006) Catal Today 116:361–366

    Article  CAS  Google Scholar 

  25. Song H, Zhang L, Ozkan US (2007) Green Chem 9:686–694

    Article  CAS  Google Scholar 

  26. Sahoo DR, Vajpai S, Patel S, Pant KK (2007) Chem Eng J 125:139–147

    Article  CAS  Google Scholar 

  27. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sources 134:27–32

    Article  CAS  Google Scholar 

  28. Llorca J, Homs N, Sales J, de la Piscina PR (2002) J Catal 209:306–317

    Article  CAS  Google Scholar 

  29. Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223–227

    Article  CAS  Google Scholar 

  30. Ahn KY, He HP, Vohs JM, Gorte RJ (2005) Electrochem Solid State Lett 8:A414–A417

    Article  CAS  Google Scholar 

  31. Campbell CT, Peden CHF (2005) Science 309:713–714

    Article  CAS  Google Scholar 

  32. Kozlov AI, Kim DH, Yezerets A, Andersen P, Kung HH, Kung MC (2002) J Catal 209:417–426

    Article  CAS  Google Scholar 

  33. Biswas P, Kunzru D (2007) Int J Hydrogen Energy 32:969–980

    Article  CAS  Google Scholar 

  34. Vargas JC, Libs S, Roger AC, Kiennemann A (2005) Catal Today 107–108:417–425

    Article  CAS  Google Scholar 

  35. Jones A, McNicol BD (1986) Temperature-programmed reduction for solid materials characterization. M Dekker, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the O. H. Reaugh Fund for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Y. Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.SY., Kim, D.H. & Ha, S.Y. Hydrogen Production from Ethanol Steam Reforming Over Supported Cobalt Catalysts. Catal Lett 122, 295–301 (2008). https://doi.org/10.1007/s10562-007-9375-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9375-3

Keywords

Navigation