Skip to main content
Log in

Supported Pd and PdAu Nanoparticles on Ti-MCM-41 Prepared by a Photo-assisted Deposition Method as Efficient Catalysts for Direct Synthesis of H2O2 from H2 and O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient methodology to synthesize highly active Pd nanoparticles using a single-site photocatalyst under UV-light irradiation has been developed for the synthesis of hydrogen peroxide (H2O2) from H2 and O2. By the photo-assisted deposition (PAD) method, Pd precursor can be deposited directly on the photo-excited tetrahedrally coordinated metal-oxide moiety within the silica frameworks, and subsequently transformed into Pd nanoparticles by H2 reduction. The mean diameter of the deposited Pd particles determined by CO adsorption and the catalytic activities in the direct synthesis of H2O2 were strongly dependent on the preparation method and kind and/or amount of metal-oxide moieties. Here, the use of Ti-containing mesoporous silica (Ti/Si = 0.01) acted as a most efficient support for the above reaction. The PAD method also provides PdAu bimetallic nanoparticles from an aqueous solution of mixture of PdCl2 and HAuCl4. The PdAu/Ti-MCM-41 catalyst prepared by the PAD method was shown to perform significantly better activity than the pure Pd/Ti-MCM-41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ertl G, Knoezinger H, Weitkamp J (eds) (1997) Catalytic process. Part B. Handbook of heterogeneous catalysis. Wiley-VCH, New York

    Google Scholar 

  2. Geus JW, van Ween JAR (1993) In: Moulijin JA, van Leeuwen PWNM, van Santen RA (eds) Catalysis: an integrated approach to homogeneous and heterogeneous and industrial catalysis. Elsevier, Amsterdam

    Google Scholar 

  3. Hayek K, Kramer R, Paál Z (1997) Appl Catal A 162:1

    Article  CAS  Google Scholar 

  4. Yang C-M, Liu P-H, Chiu C-Y, Chao K-J (2003) Chem Mater 15:275

    Article  CAS  Google Scholar 

  5. Fukuoka H, Araki Y, Sakamoto N, Sugimoto T, Tsukada Y, Kumai Y, Akimoto Y, Ichikawa M (2002) Nano Lett 2:793

    Article  CAS  Google Scholar 

  6. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  7. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  8. Zhang W, Fröba M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) J Am Chem Soc 118:9164

    Article  CAS  Google Scholar 

  9. Thomas JM, Sankar G (2001) Acc Chem Res 34:571

    Article  CAS  Google Scholar 

  10. Yamashita H, Anpo M (2004) Curr Opin Solid State Mater Sci 7:471

    Article  Google Scholar 

  11. Yamashita H, Mori K (2007) Chem. Lett. 36:348

    Article  CAS  Google Scholar 

  12. Mori K, Kondo Y, Morimoto S, Yamashita H (2008) J Phys Chem C 112:2593

    Article  CAS  Google Scholar 

  13. Mori K, Sugihara K, Kondo Y, Takeuchi T, Morimoto S, Yamashita H (2008) J Phys Chem C 112:16478

    Article  CAS  Google Scholar 

  14. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Konoya K, Tatsumi T (1998) Catal Today 44:327

    Article  CAS  Google Scholar 

  15. Higashimoto S, Hu Y, Tsumura R, Lino K, Matsuoka M, Yamashita H, Shul YG, Che M, Anpo M (2005) J Catal 235:272

    Article  CAS  Google Scholar 

  16. Pichat P, Fox MA (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam

    Google Scholar 

  17. Igarashi N, Hashimoto K, Tasumi T (2007) Micropr Mesopor Mater 104:269

    Article  CAS  Google Scholar 

  18. Wang Y, Ohishi Y, Shishido T, Zhang Q, Yang W, Guo Q, Wan H, Takehira K (2003) J Catal 220:347

    Article  CAS  Google Scholar 

  19. Sankar G, Thomas JM (1999) Top Catal 8:1

    Article  CAS  Google Scholar 

  20. Goor G, Kunkel W, Weiberg O (1989) In: Ulman’s encyclopedia of industrial chemistry, vol A13. VHS, weinheim, pp. 443–466

  21. Lunsford JH (2003) J Catal 216:455

    Article  CAS  Google Scholar 

  22. Liu Q, Baur JC, Schaak RE, Lunsford JH (2008) Angew Chem Int Ed 47:6221

    Article  CAS  Google Scholar 

  23. Choudhary VR, Samanta C, Choudhary TV (2006) Appl Catal A: General 308:128

    Article  CAS  Google Scholar 

  24. Park S-E, Huang L, Lee CW, Chang J-S (2000) Catal Today 61:117

    Article  CAS  Google Scholar 

  25. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917

    Article  CAS  Google Scholar 

  26. Edwards JK, Thomas A, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Green Chem 10:388

    Article  CAS  Google Scholar 

  27. Ishihara T, Hata Y, Nomura Y, Kaneko K, Matsumoto H (2007) Chem Lett 36:878

    Article  CAS  Google Scholar 

  28. Nomura Y, Ishihara T, Hata Y, Kitawaki K, Kaneko K, Matsumoto H (2008) Chem Sus Chem 1:619

    CAS  Google Scholar 

  29. Davis RJ, Boudart M (1994) J Phys Chem 98:5471

    Article  CAS  Google Scholar 

  30. Wu M-L, Chen D–H, Huang T-C (2001) Langmuir 17:3877

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Industrial Technology Research Grant Program in 2007 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. XAFS spectra were recorded at the beam line 01B1 station in SPring-8, JASRI, Harima, Japan (2008A1366, 2008A1457) and the BL-7C facilities at the Photon Factory at the National Laboratory for High-Energy Physics, Tsukuba (2007G031, 2007G077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, K., Araki, T., Shironita, S. et al. Supported Pd and PdAu Nanoparticles on Ti-MCM-41 Prepared by a Photo-assisted Deposition Method as Efficient Catalysts for Direct Synthesis of H2O2 from H2 and O2 . Catal Lett 131, 337–343 (2009). https://doi.org/10.1007/s10562-009-0044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0044-6

Keywords

Navigation