Skip to main content
Log in

Influence of Mg Addition on the Catalytic Activity of Alumina Supported Ag for C3H6-SCR of NO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influence of different magnesium (Mg) weight percentages (1, 2.5, 5, 7.5 and 10) over silver (3 wt%) impregnated alumina (SA) catalyst was investigated for the reduction of NO by C3H6. Mg doped SA catalysts were prepared by conventional impregnation method and characterized by XRD, BET-SA, ICP-MS, XPS, SEM, UV-DRS, H2-TPR and O2-TPD. The existence of MgO and MgAl2O4 phases on Mg doped SA catalysts were observed from XRD and XPS analyses. Existence of high percentage MgAl2O4 phase on 5% Mg doped SA catalyst (Mg (5) SA) enhances the dispersion and stabilization of silver phases (Ag2O). Mg (5) SA catalyst shows a 51% of high selectivity (NO to N2) in presence of SO2 (80 ppm) at low temperatures (350 °C) and maintained high selectivity’s with a wide temperature window (350–500 °C). An optimal high surface availability of Ag0 and Ag+ species were observed from XPS analysis over Mg (5) SA catalyst. H2-TPR analysis shows high temperature reduction peak over Mg (5) SA compared to SA catalyst. XPS analysis confirms the high percent availability of MgAl2O4 species over Mg (5) SA catalyst. DRIFTS study reveals the molecular evidences for the evolution of enolic species during NO reduction over the highly active Mg (5) SA catalyst at low temperatures. It also confirms further transformation of enolic species into –NCO species with NO + O2 and finally into N2 and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Al2(SO4)3 :

Aluminum sulfate

BET-SA:

Brunauer Emmett Teller surface area

CO2 :

Carbon dioxide

DRIFTS:

Diffuse reflectance infrared Fourier transform spectroscopy

GC:

Gas chromatograph

ICP-MS:

Inductively coupled plasma mass spectrometry

–NCO:

Isocyanate

JCPDS:

Joint committee on powder diffraction spectra

MgAl2O4 :

Magnesium aluminate

Mg:

Magnesium

MgO:

Magnesium oxide

MgSO4 :

Magnesium sulfate

MCT-A:

Mercury cadmium telluride-A

NIR:

Near infrared

NOx :

Nitric oxides

NDIR:

Non dispersive infrared

PGM:

Platinum group metals

C3H6 :

Propylene

SEM:

Scanning electron microscopy

SCR:

Selective catalytic reduction

Ag2SO4 :

Silver sulfate

SO2 :

Sulfur dioxide

H2-TPR:

Temperature programmed reduction by H2

O2-TPD:

Temperature programmed desorption of O2

TCD:

Thermal conductivity detector

UV-DRS:

Ultraviolet diffuse reflectance spectroscopy

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

SA:

3 wt% silver impregnated on alumina

Mg (1) SA:

1 wt% magnesium impregnated on 3 wt% silver alumina

Mg (2.5) SA:

2.5 wt% magnesium impregnated on 3 wt% silver alumina

Mg (5) SA:

5 wt% magnesium impregnated on 3 wt% silver alumina

Mg (7.5) SA:

7.5 wt% magnesium impregnated on 3 wt% silver alumina

Mg (10) SA:

10 wt% magnesium impregnated on 3 wt% silver alumina

References

  1. Stern AC, Boubel RW, Turner DB, Fox DL (1984) Fundamentals of air pollution, 2nd edn. Academic Press, Orlando

    Google Scholar 

  2. Burch R, Breen JP, Meunier FC (2002) Appl Catal B: Environ 39:283 (and references therein)

    Article  CAS  Google Scholar 

  3. Bethke KA, Kung MC, Yang B, Shah M, Alt D, Li C, Kung HH (1995) Catal Today 26:169

    Article  CAS  Google Scholar 

  4. Martínez-Arias A, Fernández-García M, Iglesias-Juez A, Anderson JA, Conesa JC, Soria J (2000) Appl Catal B: Environ 28:29

    Article  Google Scholar 

  5. Meunier FC, Ukropec R, Stapleton C, Ross JRH (2001) Appl Catal B: Environ 30:163

    Article  CAS  Google Scholar 

  6. Keshavaraja A, She X, Flytzani-Stephanopoulos M (2000) Appl Catal B: Environ 27:L1

    Article  CAS  Google Scholar 

  7. Lee TJ, Nam I-S, Ham S-W, Baek Y-S, Shin K-H (2003) Appl Catal B: Environ 41:115

    Article  CAS  Google Scholar 

  8. Satokawa S, Yamaseki K, Uchida H (2001) Appl Catal B: Environ 34:299

    Article  CAS  Google Scholar 

  9. Shimizu K, Shibata J, Yoshida H, Satsuma A, Hattori T (2001) Appl Catal B: Environ 30:151

    Article  CAS  Google Scholar 

  10. Bion N, Saussey J, Haneda M, Daturi M (2003) J Catal 217:47

    CAS  Google Scholar 

  11. Zhang R, Kaliaguine S (2008) Appl Catal B: Environ 78:275

    Article  CAS  Google Scholar 

  12. Furusawa T, Lefferts L, Seshan K, Aika K (2003) Appl Catal B: Environ 42:25

    Article  CAS  Google Scholar 

  13. He H, Wang J, Feng Q, Yu Y, Yoshida K (2003) Appl Catal B: Environ 46:365

    Article  CAS  Google Scholar 

  14. Zhang X, Yu Y, He H (2007) Appl Catal B: Environ 76:241

    Article  CAS  Google Scholar 

  15. Satokawa S, Shibata J, Shimizu K, Satsuma A, Hattori T (2003) Appl Catal B: Environ 42:179

    Article  CAS  Google Scholar 

  16. Miyadera T (1993) Appl Catal B: Environ 2:199

    Article  CAS  Google Scholar 

  17. Son IH, Kim MC, Koh HL, Kim KL (2001) Catal Lett 75:191

    Article  CAS  Google Scholar 

  18. Liu ZM, Hao JM, Fu LX, Zhu TL, Li JH, Cui XY (2004) Chem Eng Technol 27:77

    Article  CAS  Google Scholar 

  19. Wang J, He H, Xie SX, Yu YB (2005) Catal Commun 6:195

    Article  CAS  Google Scholar 

  20. Park PW, Boyer CL (2005) Appl Catal B: Environ 59:27

    Article  CAS  Google Scholar 

  21. Haneda M, Kintaichi Y, Inaba M, Hamada H (1998) Catal Today 42:127

    Article  CAS  Google Scholar 

  22. Kingdom AI, Davis RF, Thackery MM (1991) Introduction to glasses and ceramics, vol 4. ASM International, Materials Park

    Google Scholar 

  23. Guihaume B, Primet M (1994) Chem Soc Faraday Transport 11:1545

    Google Scholar 

  24. Aguilar-Ríos G, Salas P, Valenzuela MA, Armendariz H, Wang JA, Salmones J (1999) Catal Lett 60:21

    Article  Google Scholar 

  25. Rennard RJ, Freel J (1986) J Catal 98:235

    Article  CAS  Google Scholar 

  26. Corma A, Palomares AE, Rey F (1994) Appl Catal B: Environ 4:29

    Article  CAS  Google Scholar 

  27. Zdražil M (2003) Catal Today 86:151

    Article  Google Scholar 

  28. Shimizu K, Hashimoto M, Shibata J, Hattori T, Satsuma A (2007) Catal Today 126:266

    Article  CAS  Google Scholar 

  29. Bethke KA, Kung HH (1997) J Catal 172:93

    Article  CAS  Google Scholar 

  30. Meunier FC, Breen JP, Zuzaniuk V, Olsson M, Ross JRH (1999) J Catal 187:493

    Article  CAS  Google Scholar 

  31. Meunier FC, Ross JRH (2000) Appl Catal B: Environ 24:23

    Article  CAS  Google Scholar 

  32. Abe A, Aoyama N, Sumiya S, Kakuta N, Yoshida K (1998) Catal Lett 51:5

    Article  CAS  Google Scholar 

  33. Jen H-W (1998) Catal Today 42:37

    Article  CAS  Google Scholar 

  34. Houel V, James D, Millington P, Pollington S, Poulston S, Rajaram R, Torbati R (2005) J Catal 230:150

    Article  CAS  Google Scholar 

  35. Angelidis TN, Kruse N (2001) Appl Catal B: Environ 34:201

    Article  CAS  Google Scholar 

  36. Shibata J, Shimizu K, Takada Y, Shichi A, Yoshida H, Yoshida H, Satokawa S, Satsuma A, Hattori T (2004) J Catal 227:367

    Article  CAS  Google Scholar 

  37. Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, Chichester

    Book  Google Scholar 

  38. Gachard E, Belloni J, Subramanian MA (1996) J Mater Chem 6:867

    Article  CAS  Google Scholar 

  39. Arve K, Čapek L, Klingstedt F, Eränen K, Lindfors L-E, Murzin DY, Dědeček J, Sobalik Z, Wichterlová B (2004) Top Catal 30:91–95

    Article  Google Scholar 

  40. Li Z, Flytzani-Stephanopoulos M (1999) J Catal 182:313

    Article  CAS  Google Scholar 

  41. Richter M, Bentrup U, Eckelt R, Schneider M, Pohl M-M, Fricke R (2004) Appl Catal B: Environ 51:261 (and references therein)

    Article  CAS  Google Scholar 

  42. She X, Flytzani-Stephanopoulos M (2006) J Catal 237:79

    Article  CAS  Google Scholar 

  43. [43] Haycock DE, Nicholls CJ, Urch DS, Webber MJ, Wiech GJ (1978) Chem Soc Dalton Trans 1785

  44. She X, Flytzani-Stephanopoulos M (2007) Catal Today 127:207

    Article  CAS  Google Scholar 

  45. Arata K, Hino M (1990) Appl Catal 59:197

    Article  CAS  Google Scholar 

  46. Yu X-R, Liu F, Wang Z-Y, Chen YJ (1990) Electron Spectrosc Relat Phemon 50:159

    Article  CAS  Google Scholar 

  47. Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B: Environ 49:159

    Article  CAS  Google Scholar 

  48. Eränen K, Klingstedt F, Arve K, Lindfors LE, Murzin DY (2004) J Catal 227:328

    Article  Google Scholar 

  49. Yu Y, He H, Feng Q (2003) J Phys Chem B 107:13090

    Article  CAS  Google Scholar 

  50. Sato K, Yoshinari T, Kintaichi Y, Haneda M, Hamada H (2003) Appl Catal B: Environ 44:67

    Article  CAS  Google Scholar 

  51. Haneda M, Bion N, Daturi M, Saussey J, Lavalley JC, Duprez D, Hamada H (2002) J Catal 206:114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by a grant (07K1501-01812) from ‘Center for Nanostructured Materials Technology’ under ‘21st Century Frontier R&D Programs’ of the Ministry of Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Heon Phil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P.A., Reddy, M.P., Hyun-Sook, B. et al. Influence of Mg Addition on the Catalytic Activity of Alumina Supported Ag for C3H6-SCR of NO. Catal Lett 131, 85–97 (2009). https://doi.org/10.1007/s10562-009-9895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9895-0

Keywords

Navigation