Skip to main content
Log in

The Oxidation of Methane at Low Temperatures Over Zirconia-Supported Pd, Ir and Pt Catalysts and Deactivation by Sulfur Poisoning

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxidation of methane over zirconia-supported Pd, Ir, and Pt catalysts at low temperatures under an oxidizing atmosphere and the effect of SO2 on this reaction were investigated. An Ir–Pt/ZrO2 catalyst exhibited high activity and low deactivation by SO2. Characterization of the catalyst indicated the presence of a highly oxidized Pt species that was stabilized by the addition of Ir.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, New York, p 213

    Google Scholar 

  2. Su S, Agnew J (2006) Fuel 85:1201

    Article  CAS  Google Scholar 

  3. United States Environmental Protection Agency (2003) Assessment of the worldwide market potential for oxidizing coal mine ventilation air methane, EPA 403-R-03-002

  4. Spivey JJ (1987) Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  5. Lee JH, Trimm DL (1995) Fuel Process Technol 42:339

    Article  CAS  Google Scholar 

  6. Gélin P, Primet M (2002) Appl Catal B 39:1

    Article  Google Scholar 

  7. Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A 234:1

    Article  CAS  Google Scholar 

  8. Yu Yao YF (1980) Ind Eng Chem Res Prod Res Dev 19:293

    Article  Google Scholar 

  9. Oh SH, Mitchell PJ, Siewert RM (1992) ACS Symp Ser 495:12

    Article  CAS  Google Scholar 

  10. Burch R, Loader PK (1994) Appl Catal B 5:149

    Article  CAS  Google Scholar 

  11. Yamamoto H, Uchida H (1998) Catal Today 45:147

    Article  CAS  Google Scholar 

  12. Narui K, Yata H, Furuta K, Nishida A, Kohtoku Y, Matsuzaki T (1999) Appl Catal A 179:165

    Article  CAS  Google Scholar 

  13. Pieck CL, Vera CR, Peirotti EM, Yori JC (2002) Appl Catal A 226:281

    Article  CAS  Google Scholar 

  14. Corro G, Cano C, Fierro JLG (2010) J Mol Catal A 315:35

    Article  CAS  Google Scholar 

  15. Lapisardi G, Urfels L, Gélin P, Primet M, Kaddouri A, Garbowski E, Toppi S, Tena E (2006) Catal Today 117:564

    Article  CAS  Google Scholar 

  16. Eguchi K, Arai H (2001) Appl Catal A 222:359

    Article  CAS  Google Scholar 

  17. Schmal M, Souza MMVM, Alegre VV, Silva MAP, César DV, Perez CAC (2006) Catal Today 118:392

    Article  CAS  Google Scholar 

  18. Lampert JK, Kazi MS, Farrauto RJ (1997) Appl Catal B 14:211

    Article  CAS  Google Scholar 

  19. Mowery DL, Graboski MS, Ohno TR, McCormick RL (1999) Appl Catal B 21:157

    Article  CAS  Google Scholar 

  20. Odróñez S, Hurtado P, Sastre H, Díez FV (2004) Appl Catal A 259:41

    Article  Google Scholar 

  21. Escandón LS, Odróñez S, Vega A, Díez FV (2008) J Hazard Mater 153:742

    Article  Google Scholar 

  22. Wynblatt P, Gjostein NA (1975) Prog Solid State Chem 9:21

    Article  CAS  Google Scholar 

  23. Lee AF, Wilson K, Lambert RM, Hubbard CP, Hurley RG, McCabe RW, Gandhi HS (1999) J Catal 184:491

    Article  CAS  Google Scholar 

  24. Range KJ, Rau F, Klemat V, Heyns AM (1987) Mater Res Bull 22:1541

    Article  CAS  Google Scholar 

  25. Livingstone SE (1973) The chemistry of ruthenium, rhodium, palladium, osmium, iridium and platinum. Pergamon Press, Oxford, p 1333

    Google Scholar 

  26. Gélin P, Urfels L, Primet M, Tena E (2003) Catal Today 83:45

    Article  Google Scholar 

  27. Niwa M, Awano K, Murakami Y (1983) Appl Catal 7:317

    Article  CAS  Google Scholar 

  28. Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T (2002) Appl Catal A 233:103

    Article  CAS  Google Scholar 

  29. Nagai Y, Hirabayashi T, Dohmae K, Takagi N, Minami T, Shinjoh H, Matsumoto S (2006) J Catal 242:103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. T. Hirano (Catalyst Research Inc.) for his help and advice. The author is indebted to Mr. A. Hirayama for adsorption measurements and Mr. M. Mimii for activity measurements. The XAFS measurements were carried out by the Measurement Service, which is operated by the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No.2008B2152, 2008B2170). The author is indebted to Dr. T. Homma, Dr. H. Oji, and Dr. H. Ofuchi (JASRI) for obtaining the XAFS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Ohtsuka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtsuka, H. The Oxidation of Methane at Low Temperatures Over Zirconia-Supported Pd, Ir and Pt Catalysts and Deactivation by Sulfur Poisoning. Catal Lett 141, 413–419 (2011). https://doi.org/10.1007/s10562-010-0506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0506-x

Keywords

Navigation