Skip to main content
Log in

Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydrodeoxygenation of furfural has been investigated over three different metal catalysts, Cu, Pd and Ni supported on SiO2, on a continuous-flow reactor under atmospheric pressure of hydrogen in the 210–290 °C temperature range. The distribution of products is a strong function of the metal catalyst used. High selectivity to furfuryl alcohol is obtained over Cu/SiO2, with the formation of only small amounts of 2-methyl furan at the highest reaction temperature studied. In contrast to Cu catalyst, the conversion of furfural over Pd/SiO2 mainly produces furan by decarbonylation. Furan can further react with hydrogen to form tetrahydrofuran (THF). Finally, on Ni/SiO2 catalysts ring opening products (butanal, butanol and butane) can be obtained in significant amounts. The different product distributions are explained in terms of the strength of interaction of the furan ring with the metal surface and the type of surface intermediates that each metal is able to stabilize.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoydonckx HE, Van Rhijn WM, Rhijn WV, De Vos DE, Jacobs PA (2000) Furfural and Derivatives in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  2. Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2009) Appl Catal B 66:111

    Google Scholar 

  3. Demirbas A (2007) Fuel Proc Technol 88:591

    Article  CAS  Google Scholar 

  4. Wiggers VR, Wisniewski A, Madureira LAS, Chivanga Barros AA, Meier HF (2009) Fuel Proc Technol 88:2135

    CAS  Google Scholar 

  5. Perez MG, Shen J, Wang XS, Li CZ (2010) Fuel Proc Technol 91:296

    Article  Google Scholar 

  6. Lede J, Broust F, Ndiaye FT, Ferrer M (2007) Fuel 86:1800

    Article  CAS  Google Scholar 

  7. Asadullah M, Rahman MA, Ali MM, Rahman MS, Sultan MB, Motin MA, Alam MR (2007) Fuel 86:2514

    Article  CAS  Google Scholar 

  8. Onay O, Kockar OM (2006) Fuel 85:1921

    Article  CAS  Google Scholar 

  9. Zabaniotou A, Ioannidou O, Skoulou V (2008) Fuel 87:1492

    Article  CAS  Google Scholar 

  10. Sims REH, Mabee W, Saddler JN, Taylor M (2010) Bioresour Technol 10:1570

    Article  Google Scholar 

  11. He R, Ye XP, English BC, Satrio JA (2009) Bioresour Technol 100:5305

    Article  CAS  Google Scholar 

  12. Adam J, Blazso M, Meszaros E, Stocker M, Bouzgac A, Nilsen MH, Hustada JE, Grønli M, Øyed G (2005) Fuel 84:1494

    CAS  Google Scholar 

  13. Baijun L, Lianhai L, Bingchun W, Tianxi C, Iwatani K (1998) Appl Catal A 171:117

    Article  Google Scholar 

  14. Lohitharn N, Shanks BH (2009) Catal Commun 11:96

    Article  CAS  Google Scholar 

  15. Nagaraja BM, Padmasri AH, Seetharamulu P, Hari Prasad Reddy K, David Raju B, Rama Rao KS (2007) J Mol Catal A 278:29

    Article  CAS  Google Scholar 

  16. Murthy MS, Rajamani K (1974) Chem Eng Sci 29:601

    Article  CAS  Google Scholar 

  17. Zheng HY, Zhu YL, Huang L, Zeng ZY, Wan HJ, Li YW (2008) Catal Commun 9:342

    Article  CAS  Google Scholar 

  18. Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Appl Catal 66:111

    Article  CAS  Google Scholar 

  19. Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Catal Commun 6:633

    Article  CAS  Google Scholar 

  20. Li H, Luo H, Zhuang L, Dai W, Qiao M (2003) J Mol Catal A 203:267

    Article  CAS  Google Scholar 

  21. Kijenski J, Winiarek P, Paryjczak T, Lewicki A, Mikołajska A (2002) Appl Catal A 233:171

    Article  CAS  Google Scholar 

  22. Nagaraja BM, Padmasri AH, Raju BD, Rama Rao KS (2007) J Mol Catal A 265:90

    Article  CAS  Google Scholar 

  23. Resasco DE, Crossley S (2009) AIChE J 55:1082

    Article  CAS  Google Scholar 

  24. Chheda JN, Dumesic JA (2007) Catal Today 123:59

    Article  CAS  Google Scholar 

  25. West RM, Kunkes EL, Simonetti DA, Dumesic JA (2009) Catal Today 147:115

    Article  CAS  Google Scholar 

  26. Fisk CA, Morgan T, Ji Y, Crocker M, Crofcheck C, Lewis SA (2009) Appl Catal A 358:150

    Article  CAS  Google Scholar 

  27. Mercader FM, Groeneveld MJ, Kersten SRA, Way NWJ, Schaverien CJ, Hogendoorn JA (2010) Appl Catal B 96:57

    Article  Google Scholar 

  28. Barama S, Batiot CD, Capron M, Richard EB, Mohammedi OB (2009) Catal Today 141:385

    Article  CAS  Google Scholar 

  29. Gusovius AF, Watling TC, Prins R (2008) Appl Catal A Gen 343:16

    Article  Google Scholar 

  30. Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2010) J Catal 277:1

    Article  Google Scholar 

  31. Aguila G, Gracia F, Araya P (1986) App Catal A Gen 101:162

    Google Scholar 

  32. Colombo Y, Gazzarini F, Lanzavecchia G (1967) Mater Sci Eng 2:125

    Article  CAS  Google Scholar 

  33. Szekely J, Lin CI, Sohn HY (1973) Chem Eng Sci 28:1975

    Article  CAS  Google Scholar 

  34. Ermakova MA, Ermakov DY (2002) Catal Today 77:225

    Article  CAS  Google Scholar 

  35. Montes M, Penneman de Bosscheyde CH, Hodnett BK, Delannay F, Grange P, Delmon B (1984) Appl Catal 12:309

    Article  CAS  Google Scholar 

  36. Rao R, Dandekar A, Baker RTK, Vannice MA (1997) J Catal 171:406

    Article  CAS  Google Scholar 

  37. Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Catal Comm 9:633

    Article  Google Scholar 

  38. Nagaraja BM, Padmasri AH, Raju BD, Rao KSR (2007) J Mol Catal A: Chem 265:90

    Article  CAS  Google Scholar 

  39. Nagaraja BM, Kumar VS, Shasikala V, Padmasri AH, Sreedhar B, Raju BD, Rao KSR (2003) Catal Comm 4:287

    Article  CAS  Google Scholar 

  40. Avery NR (1983) Surf Sci 125:771

    Article  CAS  Google Scholar 

  41. Boronat M, May M, Illas F (2008) Surf Sci 602:3284

    Article  CAS  Google Scholar 

  42. Chambers A, Jackson SD, Stirling D, Webb G (1997) J Catal 168:301

    Article  CAS  Google Scholar 

  43. Saadi A, Rassoul Z, Bettahar MM (2000) J Mol Catal A Chem 164:205

    Article  CAS  Google Scholar 

  44. Srivastava RD, Guha AK (1985) J Catal 91:254

    Article  CAS  Google Scholar 

  45. Shekhar R, Plank RV, Vohs JM, Barteau MA (1997) J Phys Chem B 101:7939

    Article  CAS  Google Scholar 

  46. Davis JL, Barteau MA (1989) J Am Chem Soc 111:1782

    Article  CAS  Google Scholar 

  47. Bradley MK, Robinson J, Woodruff DP (2010) Surf Sci 604:920

    Article  CAS  Google Scholar 

  48. Mavrikakis M, Barteau MA (1998) J Mol Catal A 131:135

    Article  CAS  Google Scholar 

  49. Xinghua Z, Tiejun W, Longlong M, Chuangzhi W (2010) Fuel 89:2697

    Article  Google Scholar 

  50. Orita H, Itoh N (2004) Surf Sci 550:177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation EPSCOR (Grant 0814361), the Oklahoma Bioenergy Center, and the Department of Energy (Grant DE-FG36GO88064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Resasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitthisa, S., Resasco, D.E. Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni. Catal Lett 141, 784–791 (2011). https://doi.org/10.1007/s10562-011-0581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0581-7

Keywords

Navigation