Skip to main content
Log in

Upgrading of Lignin-Derived Compounds: Reactions of Eugenol Catalyzed by HY Zeolite and by Pt/γ-Al2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The conversion of eugenol (4-allyl-2-methoxyphenol), a compound derived from the lignin in woody biomass, was catalyzed by HY zeolite at 573 K and atmospheric pressure. The main products were isoeugenol and guaiacol, formed by isomerization and by deallylation, respectively. Substituted guaiacols with saturated side-chains (4-methylguaiacol, 4-ethylguaiacol, and 4-propylguaiacol) were also formed, by hydrogen transfer and alkylation reactions. The pseudo-first-order rate constant for the overall disappearance of eugenol was found to be 12.4 L (g of catalyst)/h. When the catalyst was Pt/γ-Al2O3 used in the presence of H2, significant hydrogenation of the propenyl side-chain took place, accompanied by isomerization, and hydrodeoxygenation. Under similar operating conditions, the reaction catalyzed by Pt/γ-Al2O3 in the presence of H2 gave a higher eugenol conversion (X = 0.70) than the reaction catalyzed by HY zeolite (X = 0.11), primarily because of the dominant hydrogenation observed with the former catalyst. In the absence of H2 as a co-reactant, the acidic γ-Al2O3 support in Pt/γ-Al2O3 evidently catalyzed all the classes of reactions catalyzed by HY zeolite.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  2. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic, San Diego

    Google Scholar 

  3. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552

    Article  CAS  Google Scholar 

  4. Mohan D, Pittman CU, Steele PH (2006) Energy Fuels 20:848

    Article  CAS  Google Scholar 

  5. Srivastava LM (2001) Plant growth and development: hormones and environment. Academic, Amsterdam

    Google Scholar 

  6. Ferdous D, Dalai AK, Bej SK, Thring RW (2010) Can J Chem Eng 79:913

    Article  Google Scholar 

  7. Binder JB, Gray MJ, White JF, Zhang ZC (2009) Biomass Bioenergy 33:1122

    Article  CAS  Google Scholar 

  8. Telysheva G, Dobele, Meier D, Dizhbite T, Rossinska G, Jurkjane V (2007) J Anal Appl Pyrolysis 79:52

    Article  CAS  Google Scholar 

  9. Hong DY, Miller SJ, Agrawal PK, Jones CW (2010) Chem Comm 46:1038

    Article  CAS  Google Scholar 

  10. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA (2009) Angew Chem Int Ed Engl 48:3987

    Article  CAS  Google Scholar 

  11. Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC (2011) Catal Lett 141:1072

    Article  CAS  Google Scholar 

  12. Runnebaum RC, Nimmanwudipong T, Block DE, Gates BC (2011) Catal Lett 141:817

    Article  CAS  Google Scholar 

  13. Runnebaum RC, Lobo-Lapidus RJ, Nimmanwudipong T, Block DE, Gates BC (2011) Energy Fuels 25:4776

    Article  CAS  Google Scholar 

  14. Zhu X, Mallison RG, Resasco DE (2010) Appl Catal A 379:172

    Article  CAS  Google Scholar 

  15. González-Borja MA, Resasco DE (2011) Energy Fuels. doi:10.1021/ef200728r

  16. Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC (2011) Catal Lett 141:779

    Article  CAS  Google Scholar 

  17. Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC (2011) Energy Fuels 25:3417

    Article  CAS  Google Scholar 

  18. Gutierrez A, Kaila RK, Honkela ML, Siloor R, Krause AOI (2009) Catal Today 147:239

    Article  CAS  Google Scholar 

  19. Sergeev AG, Hartwig JF (2011) Science 332:439

    Article  CAS  Google Scholar 

  20. Adjaye JD, Bakhshi NN (1995) Biomass Bioenergy 8:131

    Article  CAS  Google Scholar 

  21. Leary GJ (1980) Wood Sci Technol 14:21

    Article  CAS  Google Scholar 

  22. Nolte CG, Schauer JJ, Cass GR, Simoneit RT (2001) Environ Sci Technol 35:1912

    Article  CAS  Google Scholar 

  23. Grob RL (1997) Modern practice of gas chromatography. Wiley, New York

    Google Scholar 

  24. Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Harcourt Brace/Saunders College Publishing, Philadelphia

    Google Scholar 

  25. The pherobase: database for insect pheromones and semiochemicals. http://www.pherobase.com. Accessed Aug 2011

  26. Bhore NA, Klein MT, Bischoff KB (1990) Ind Eng Chem Res 29:313

    Article  CAS  Google Scholar 

  27. Bhore NA, Klein MT, Bischoff KB (1990) Chem Eng Sci 45:2109

    Article  CAS  Google Scholar 

  28. Červernỳ L, Krejčiková A, Marhoul A, Růžička (1987) React Kinet Catal Lett 33:471

    Article  Google Scholar 

  29. Kishore D, Kannan S (2002) Green Chem 4:607

    Article  CAS  Google Scholar 

  30. Kishore D, Kannan S (2004) App Catal A Gen 270:227

    Article  CAS  Google Scholar 

  31. Jinesh CM, Churchil A, Antonyaraj SK (2009) Catal Today 141:176

    Article  CAS  Google Scholar 

  32. Sharma SK, Srivastava VK, Jasra RV (2006) J Mol Catal A Chem 245:200

    Article  CAS  Google Scholar 

  33. John TM, Wojciechowski BW (1975) J Catal 37:240

    Article  CAS  Google Scholar 

  34. Gates BC (1992) Catalytic chemistry. Wiley, New York

    Google Scholar 

  35. Gates BC, Katzer JR, Schuit GCA (1979) Chemistry of catalytic processes. McGraw-Hill, New York

    Google Scholar 

  36. Pines H (1981) The chemistry of catalytic hydrocarbon conversions. Academic, New York

    Google Scholar 

  37. Ko AN, Wojciechowski BW (1983) Int J Chem Kinet 15:1249

    Article  CAS  Google Scholar 

  38. Venuto PB, Hamilton LA, Landis PS (1966) J Catal 5:484

    Article  CAS  Google Scholar 

  39. Zhou X, Chen T, Yang B, Jiang X, Zhang H, Wang L (2011) Energy Fuels 25:2427

    Article  CAS  Google Scholar 

  40. Marczewski M, Wojciechowski BW (1982) Can J Chem Eng 60:622

    Article  CAS  Google Scholar 

  41. Jasra RV, Bhatt BD, Garg VN, Bhat SGT (1988) Appl Catal 39:49

    Article  CAS  Google Scholar 

  42. Bensel N, Pevere V, Desmurs JR, Wagner A, Mioskowski C (2002) Tetrahedron Lett 43:4281

    Article  CAS  Google Scholar 

  43. Sheldon RA, van Bekkum H (2001) Fine chemicals through heterogeneous catalysis. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgments

We thank Anna Hjelmeland and Jennifer Heelan for help with gas chromatography and Ryan Limbo, Kevin Tay, and Jonathan Doan for help with the catalytic reaction experiments. Fellowships to support RCR and TN were provided by the Ernest Gallo Endowed Chair in Viticulture and Enology and by Chevron, respectively. An Agilent Technologies Foundation Research Project Gift provided a GC7890 Refinery Gas Analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Gates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmanwudipong, T., Runnebaum, R.C., Ebeler, S.E. et al. Upgrading of Lignin-Derived Compounds: Reactions of Eugenol Catalyzed by HY Zeolite and by Pt/γ-Al2O3 . Catal Lett 142, 151–160 (2012). https://doi.org/10.1007/s10562-011-0759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0759-z

Keywords

Navigation