Skip to main content
Log in

Optimization of Opto-Electrical and Photocatalytic Properties of SnO2 Thin Films Using Zn2+ and W6+ Dopant Ions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Zn2+ and W6+ doped tin oxide (SnO2) thin films with various dopant concentrations were prepared by spray pyrolysis deposition, and were characterized by X-ray diffraction, atomic force microscopy, contact angle, absorbance, current density–voltage (J–V) and photocurrent measurements. The results showed that W6+ doping can prevent the growth of nanosized SnO2 crystallites. When Zn2+ ions were used, the crystallite sizes were proved to be similar with the undoped sample due to the similar ionic radius between Zn2+ and Sn4+. Regardless of the dopant ions’ type or concentration, the surface energy has a predominant dispersive component. By using Zn2+ dopant ions it is possible to decrease the band gap value (3.35 eV) and to increase the electrical conductivity. Photocatalytic experiments with methylene blue demonstrated that with zinc doped SnO2 films photodegradation efficiencies close to 30% can be reached.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu X, Zhang J, Guo X, Wu S, Wang S (2011) Sens Actuator B 152:162

    Article  Google Scholar 

  2. Fu C, Wang J, Yang M, Su X, Xu J, Jiang B (2011) J Non Cryst Solids 357:1172

    Article  CAS  Google Scholar 

  3. Navgire ME, Lande MK, Gambhire AB, Rathod SB, Aware DV, Bhitre SR (2011) B Mater Sci 3:535

    Article  Google Scholar 

  4. Kalygina VM, Zarubin AN, YeP N, Novikov VA, Petrova YS, Tolbanov OP, Tyazhev AV, Yaskevich TM (2011) Semiconductors 45:1097

    Article  CAS  Google Scholar 

  5. Liu S, Ding W, Chai W (2011) Phys B 406:2303

    Article  CAS  Google Scholar 

  6. Choudhury B, Choudhury A, Maidul AKM, Alagarsamy P, Mukherjee M (2011) J Magn Magn Mater 323:440

    Article  CAS  Google Scholar 

  7. Mishra AK, Sinha TP, Bandyopadhyay S, Das D (2011) Mater Chem Phys 125:252

    Article  CAS  Google Scholar 

  8. Giribabu L, Singh VK, Srinivasu M, Kumar CV, Reddy VG, Soujnya Y, Reddy PY (2011) J Chem Sci 123:371

    Article  CAS  Google Scholar 

  9. Stambolova I, Blaskov V, Vassilev S, Shipochka M, Dushkin C (2010) J Alloy Compd 489:257

    Article  CAS  Google Scholar 

  10. Sathyaseelan B, Senthilnathan K, Alagesan T, Jayavel R, Sivakumar K (2010) Mater Chem Phys 124:1046

    Article  CAS  Google Scholar 

  11. Ding X, Zeng D, Xie C (2010) Sens Actuator B 149:336

    Article  Google Scholar 

  12. Wei W, Dai Y, Guo M, Zhang Z, Huang B (2010) J Solid State Chem 183:3073

    Article  CAS  Google Scholar 

  13. Klamchuen A, Yanagida T, Kanai M, Nagashima K, Oka K, Kawai T, Suzuki M, Hidaka Y, Kai S (2010) J Cryst Growth 312:3251

    Article  CAS  Google Scholar 

  14. Soitah TN, Yang C, Sun L (2010) Mat Sci Semicon Proc 13:25

    Article  Google Scholar 

  15. Habibi MH, Nasr-Esfahani M (2007) Dyes Pigments 75:714

    Article  CAS  Google Scholar 

  16. Chan SH, Wu TY, Juan JC, Yang C (2011) J Chem Technol Biot 86:1130

    Article  CAS  Google Scholar 

  17. Rehman S, Ullah R, Butt AM, Gohar ND (2009) J Hazard Mater 170:560

    Article  CAS  Google Scholar 

  18. Oller I, Malato S, Sánchez-Pérez JA (2011) Sci Total Environ 409:4141

    Article  CAS  Google Scholar 

  19. Epifani M, Alvisi M, Mirenghi L, Leo G, Siciliano P, Vasanelli L (2001) J Am Ceram Soc 84:48

    Article  CAS  Google Scholar 

  20. Korotcenkov G, Han SD (2009) Mater Chem Phys 113:756

    Article  CAS  Google Scholar 

  21. Andronic L, Manolache S, Duta A (2008) J Nanosci Nanotechnol 8:728

    Article  CAS  Google Scholar 

  22. Andronic L, Hristache B, Enesca A, Visa M, Duta A (2009) Environ Eng Manag J 8:747

    CAS  Google Scholar 

  23. Batsanov SS (2011) J Struct Chem 52:602

    CAS  Google Scholar 

  24. Goldsmith S, Çetinörgü E, Boxman RL (2009) Thin Solid Films 517:5146

    Article  CAS  Google Scholar 

  25. Xiangping C, Jianyu L, Zhentao Z, Huanan D, Boquan L, Qiming Y (2010) Mater Res Bull 45:2006

    Article  Google Scholar 

  26. Ahmed AS, Muhamed SM, Singla ML, Tabassum S, Naqvi AH, Azam A (2011) J Lumin 131:1–6

    Article  CAS  Google Scholar 

  27. Enesca A, Andronic L, Duta A (2009) Environ Eng Manage J 8:753

    CAS  Google Scholar 

  28. Enesca A, Duta A (2008) Phys Status Solidi C 5:3499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU ID59323.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandru Enesca or Anca Duta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enesca, A., Andronic, L. & Duta, A. Optimization of Opto-Electrical and Photocatalytic Properties of SnO2 Thin Films Using Zn2+ and W6+ Dopant Ions. Catal Lett 142, 224–230 (2012). https://doi.org/10.1007/s10562-011-0762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0762-4

Keywords

Navigation