Skip to main content
Log in

Ethylene Epoxidation Activity Over Ag-Based Catalysts on Different Nanocrystalline Perovskite Titanate Supports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ag-based catalysts on different nanocrystalline perovskite supports (MgTiO3, CaTiO3, SrTiO3, and BaTiO3), and nanocrystalline TiO2 support prepared by a sol–gel method and on a commercial α-Al2O3 support were comparatively studied for catalytic activity of the ethylene epoxidation reaction. The dependence of ethylene oxide production performance on calcination temperature of the support, type of titanate nanocrystal supports, Ag loading, and reaction temperature was systematically investigated. The catalysts were analytically characterized by a Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). Among studied catalysts, the 17.2 wt% Ag/SrTiO3 catalyst exhibited the highest catalytic activity towards ethylene epoxidation reaction.

Graphical Abstract

The long-term stability of the dominant catalysts (which exhibited a high catalytic activity to produce ethylene oxide) was studied at 48 h of time on stream. As shown in the figure, the 17.2 wt% Ag/SrTiO3 catalyst with the support calcination temperature of 923 K is the most effective catalyst for the ethylene epoxidation reaction, giving not only the highest EO selectivity but also providing the highest long-term stability.

EO selectivity as a function of time on stream for 17.2 wt% Ag/SrTiO3 catalyst at the support calcination temperatures of 773 and 923 K compared with 17.1 wt% Ag/BaTiO3 catalyst and a commercial 14.9 wt% Ag/α-Al2O3 catalyst (6 % O2 and 6 % C2H4 balanced with He, a space velocity of 6,000 h−1, a pressure of 24.7 psia, and a reaction temperature of 548 K)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lefort TE (1935) US Patent 1:998

  2. Marta CN, Amorim DC, Fabio BP, Schmal M (2007) J Catal 248:124–129

    Article  Google Scholar 

  3. Jankowiak JT, Barteau MA (2005) J Catal 236:366–378

    Article  CAS  Google Scholar 

  4. Santen RAV, Kuipers HPCE (1987) Adv Catal 35:1–57

    Article  Google Scholar 

  5. Bharthwaj A (2002) Ph.D. Dissertation. Massachusetts Institute of Technology, USA

  6. Minahan DM, Hoflund GB, Epling WS, Schoenfeldz DW (1997) J Catal 168:393–399

    Article  CAS  Google Scholar 

  7. Peng Y, Zhang S (1992) Catal Lett 12:307–318

    Article  CAS  Google Scholar 

  8. Daniel T, Francesc I, Lambert RM (2008) J Catal 260:380–383

    Article  Google Scholar 

  9. Frank ER, Hamers RJ (1997) J Catal 172:406–413

    Article  CAS  Google Scholar 

  10. Karavasilis Ch, Bebelis S, Vayenas CG (1996) J Catal 160:205–213

    Article  Google Scholar 

  11. Grant RB, Lambert RM (1985) Langmuir 1:29–33

    Article  CAS  Google Scholar 

  12. Zhou XG, Yuan WK (2005) Chem Eng Process 44:1098–1107

    Article  CAS  Google Scholar 

  13. Dellamorte JC, Lauterbach J, Barteau MA (2007) Catal Today 120:182–185

    Article  CAS  Google Scholar 

  14. Podgornov EA, Prosvirin IP, Bukhtiyarov VI (2000) J Mol Catal 158:337–343

    Article  CAS  Google Scholar 

  15. Yeung KL, Gavriilidis A, Varma A, Bhasiny MM (1998) J Catal 174:1–12

    Article  CAS  Google Scholar 

  16. Lafarga D, Varma A (2000) Chem Eng Sci 55:749–758

    Article  CAS  Google Scholar 

  17. Ayame A, Uchida Y, Ono H, Miyamoto M, Sato T, Hayasaka H (2003) Appl Catal A 244:59–70

    Article  CAS  Google Scholar 

  18. Fotopoulos AP, Triantafyllidis KS (2007) Catal Today 127:148–156

    Article  CAS  Google Scholar 

  19. Korchagin AI, Kuksanov NK, Lavrukhin AV, Fadeev SN, Salimov RA, Bardakhanov SP, Goncharov VB, Suknev AP, Paukshtis EA, Larina TV, Zaikovskii VI, Bogdanov SV, Balzhinimaev BS (2005) Vacuum 77:485–491

    Article  CAS  Google Scholar 

  20. Wolf A, Schuth F (2002) Appl Catal A 226:1–13

    Article  CAS  Google Scholar 

  21. Eldridge JM, Ahn KY, Forbes L (2009) US Patent 2:1-35

  22. Kim YC, Park NC, Shin JS, Lee SR, Lee YJ, Moon DJ (2003) Catal Today 87:153–162

    Article  CAS  Google Scholar 

  23. Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) J Am Ceram Soc 83:2385–2393

    Article  CAS  Google Scholar 

  24. Sreethawong T, Suzuki Y, Yoshikawa S (2005) J Solid State Chem 178:329–338

    Article  CAS  Google Scholar 

  25. Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2008) J Mol Catal A: Chem 287:70–79

    Article  CAS  Google Scholar 

  26. Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T (2010) Int J Hydrogen Energy 35:12428–12442

    Article  CAS  Google Scholar 

  27. Chongterdtoonskul A, Schwank JW, Chavadej S (2012) J Mol Catal A: Chem 358:58–66

    Google Scholar 

  28. Sreethawong T, Suzuki Y, Yoshikawa S (2005) Int J Hydrogen Energy 30:1053–1062

    Article  CAS  Google Scholar 

  29. Sreethawong T, Yoshikawa S (2005) Catal Commun 6:661–668

    Article  CAS  Google Scholar 

  30. Sreethawong T, Yoshikawa S (2006) Int J Hydrogen Energy 31:786–796

    Article  CAS  Google Scholar 

  31. Sreethawong T, Puangpetch T, Chavadej S, Yoshikawa S (2007) J Power Sources 165:861–869

    Article  CAS  Google Scholar 

  32. Sreethawong T, Laehsalee S, Chavadej S (2008) Int J Hydrogen Energy 33:5947–5957

    Article  CAS  Google Scholar 

  33. Sreethawong T, Junbua C, Chavadej S (2009) J Power Sources 190:513–524

    Article  CAS  Google Scholar 

  34. Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2009) J Mol Catal A: Chem 312:97–106

    Article  CAS  Google Scholar 

  35. Puangpetch T, Chavadej S, Sreethawong T (2011) Energy Convers Manage 52:2256–2261

    Article  CAS  Google Scholar 

  36. Cullity BD (1978) Elements of X-ray diffraction. Addison–Wesley, Reading

    Google Scholar 

  37. Jackson AG (1991) Handbook of crystallography. Springer, New York

    Book  Google Scholar 

  38. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics, Eden Prairie

  39. Chen S, Manos G (2004) J Catal 226:343–350

    Article  CAS  Google Scholar 

  40. Brillis AA, Manos G (2003) Catal Lett 91:185–191

    Article  CAS  Google Scholar 

  41. Rojluechai S (2006) Ph.D. Dissertation. The Petroleum and Petrochemical College, Chalongkorn University, Bangkok, Thailand

  42. Smith JV (1960) X-ray powder data file. American Society for Testing Materials, Philadelphia

    Google Scholar 

  43. Lin L, Lin W, Xie JL, Zhu YX, Zhao BY, Xie YC (2007) Appl Catal B Environ 75:52–58

    Article  CAS  Google Scholar 

  44. Ozbek MO, Onal I, Santen RA (2011) ChemCatChem 3:150–153

    Article  Google Scholar 

  45. Mastikhin VM, Goncharova SN, Tapilin VM, Terskikh VV, Balzhinimaev BS (1995) J Mol Catal A: Chem 96:175–179

    Article  CAS  Google Scholar 

  46. Goncharova SN, Paukshtis EA, Balzhinimaev BS (1995) Appl Catal A 126:67–84

    Article  CAS  Google Scholar 

  47. Lee JK, Verykios XE, Pitchai R (1989) Appl Catal 50:171

    Article  CAS  Google Scholar 

  48. Hassani SS, Ghasemi MR, Rashidzadeh M, Sobat Z (2009) Cryst Res Cryst Technol 44:948–952

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Royal Golden Jubilee Ph.D. Program (RGJ-Industry) awarded by The Thailand Research Fund with the in-kind support from PTT Global Chemical Public Co. Ltd.; the Sustainable Petroleum and Petrochemicals Research Unit, Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University (Thailand); and the Transportation Energy Center, Department of Chemical Engineering, University of Michigan (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaeth Chavadej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chongterdtoonskul, A., Schwank, J.W. & Chavadej, S. Ethylene Epoxidation Activity Over Ag-Based Catalysts on Different Nanocrystalline Perovskite Titanate Supports. Catal Lett 142, 991–1002 (2012). https://doi.org/10.1007/s10562-012-0848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0848-7

Keywords

Navigation