Skip to main content
Log in

Inverse Hysteresis Phenomena During CO and C3H6 Oxidation over a Pt/Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

It is well known that conversion as a function of temperature hysteresis can occur during ignition and extinction exothermic reaction experiments, such as CO oxidation over Pt/Al2O3, with the activity during the ignition process not matching that during the extinction process. Conversions being higher during extinction than that during ignition are often observed. Several explanations have been proposed in which heat effects, different catalyst surface states, and different Pt oxidation states are the most common. In this work CO oxidation hysteresis behavior, when in a mixture with C3H6, was investigated. The results show that when C3H6 was absent, CO oxidation followed normal hysteresis behavior; however, when C3H6 was added to the mixture, the catalytic activity during the extinction phase decreased. As the C3H6 concentration in the mixture increased, the hysteresis loop became smaller and ultimately reverse hysteresis was observed. The decrease in catalytic activity during extinction was due to the formation of C3H6 oxidation intermediate species. These species competed with CO for active sites, thus inhibiting CO oxidation, and were not present during ignition as CO was the dominant adsorbed species when starting at low temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tronci S, Baratti R, Gavriilidis A (1999) Chem Eng Commun 173:53

    Article  CAS  Google Scholar 

  2. Twigg MV (2006) Catal Today 117:407

    Article  CAS  Google Scholar 

  3. Engel T, Ertl G (1979) Adv Catal 28:1

    Article  CAS  Google Scholar 

  4. Langmuir I (1922) Trans Faraday Soc 17:621

    Article  Google Scholar 

  5. Salomons S, Votsmeier M, Hayes RE, Drochner A, Vogel H, Gieshof J (2006) Catal Today 117:491

    Article  CAS  Google Scholar 

  6. Shishu RC, Kowalczyk LS (1974) Platin Met Rev 18:58

    CAS  Google Scholar 

  7. Voltz SE, Morgan CR, Liederman D, Jacob SM (1973) Ind Eng Chem Prod Res Dev 12:294

    Article  CAS  Google Scholar 

  8. Wei J (1975) Adv Catal 24:57

    Article  CAS  Google Scholar 

  9. Russell A, Epling WS (2011) Catal Rev Sci Eng 53:337

    Article  CAS  Google Scholar 

  10. Carlsson P-A, Österlund L, Thormählen P, Palmqvist A, Fridell E, Jansson J, Skoglundh M (2004) J Catal 226:422

    Article  CAS  Google Scholar 

  11. Salomons S, Hayes RE, Votsmeier M, Drochner A, Malmberg S, Gieshoff J (2007) Appl Catal B 70:305

    Article  CAS  Google Scholar 

  12. Beusch H, Fieguth P, Wicke E (1972) Chem Ing Tech 44:445

    Article  CAS  Google Scholar 

  13. Carlsson P-A, Skoglundh M (2011) Appl Catal B 101:669

    Article  CAS  Google Scholar 

  14. Chakrabarty T, Silveston PL, Hudgins RR (1984) Can J Chem Eng 62:651

    Article  CAS  Google Scholar 

  15. Gudkov BS, Subbotin AN, Yakerson VI (1999) React Kinet Catal Lett 68:125

    Article  CAS  Google Scholar 

  16. Hauptmann W, Votsmeier M, Gieshoff J, Drochner A, Vogel H (2009) Appl Catal B 93:22

    Article  CAS  Google Scholar 

  17. Hegedus LL, Oh SH, Baron K (1977) AIChE J 23:632

    Article  CAS  Google Scholar 

  18. Oh SH, Baron K, Sloan EM, Hegedus LL (1979) J Catal 59:272

    Article  CAS  Google Scholar 

  19. Schmitz RA (1975) Chem React Eng Rev 148:156

    Article  CAS  Google Scholar 

  20. Smith TG, Zahradnik J, Carberry JJ (1975) Chem Eng Sci 30:763

    Article  CAS  Google Scholar 

  21. Subbotin AN, Gudkov BS, Yakerson VI, Chertkova SV, Golosman EZ, Kozyreva GV (2001) Russ J Appl Chem 74:1506

    Article  CAS  Google Scholar 

  22. Subbotin AN, Vorob’eva MP, Gudkov BS, Yakerson VI, Kustov LM (2002) Russ J Appl Chem 75:582

    Article  CAS  Google Scholar 

  23. Subbotin AN, Gudkov BS, Dykh ZhL, Yakerson VL (1999) React Kinet Catal Lett 66:97

    Article  CAS  Google Scholar 

  24. Usachev NY, Gorevaya IA, Belanova EP, Kazakov AV, Kharlamov VV (2004) Mendeleev Commun 14:79

    Article  Google Scholar 

  25. Wei J, Becker R (1975) Adv Chem Ser 143:116

    Article  CAS  Google Scholar 

  26. Carlsson PA, Skoglundh M, Fridell E, Jobson E, Andersson B (2002) Catal Today 73:307

    Article  CAS  Google Scholar 

  27. Epling WS, Peden CHP, Szanyi JN (2008) J Phys Chem C 112:10952

    Article  CAS  Google Scholar 

  28. Lercher JA, Colombier C, Noller H (1984) J Chem Soc 80:949

    CAS  Google Scholar 

  29. Morterra C, Ghiotti G, Boccuzi F, Coluccia S (1978) J Catal 51:299

    Article  CAS  Google Scholar 

  30. Toops TJ, Smith DB, Epling WS, Parks JE, Partridge WP (2005) Appl Catal B 58:255

    Article  CAS  Google Scholar 

  31. Iordan A, Zaki MI, Kappenstein C (1993) J Chem Soc 89:2527

    CAS  Google Scholar 

  32. Kantschewa M, Albano EV, Etrtl G, Knozinger H (1983) Appl Catal 8:71

    Article  CAS  Google Scholar 

  33. Krupay BW, Amenomiya Y (1981) J Catal 67:362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge AUTO21 for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Epling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abedi, A., Hayes, R., Votsmeier, M. et al. Inverse Hysteresis Phenomena During CO and C3H6 Oxidation over a Pt/Al2O3 Catalyst. Catal Lett 142, 930–935 (2012). https://doi.org/10.1007/s10562-012-0861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0861-x

Keywords

Navigation