Skip to main content
Log in

Metal Phosphides: Preparation, Characterization and Catalytic Reactivity

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The preparation, characterization, and catalytic activity of supported metal phosphides are reviewed. Reduction of metal compounds together with phosphate is a convenient method to prepare metal phosphides, but requires high temperature. Reduction with phosphite, hypophosphite, or phosphine and the plasma reduction of phosphate can be carried out at lower temperatures, which leads to smaller metal phosphide particles and more active catalysts. Organometallic routes allow the separate synthesis of metal phosphide nanoparticles, which have to be added to the support in a second step. LEED, STM, XPS, and DFT studies have shown that the surfaces of Ni2P reconstruct to P-rich surfaces. The investigation of metal phosphides as catalysts for hydrotreating reactions continues to be a topic of considerable research with recent advances realized in using bimetallic and noble metal phosphides to achieve high activities and tailored selectivities. Finally, hydrodeoxygenation catalysis over metal phosphides is a growing area of research given the need to develop catalysts for upgrading biomass to transportation fuels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Scheme 4
Fig. 6
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 9
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Muetterties EL, Sauer JC (1974) J Am Chem Soc 96:3410–3415

    Article  CAS  Google Scholar 

  2. Nozaki F, Adachi R (1975) J Catal 40:166–172

    Article  CAS  Google Scholar 

  3. Oyama ST (2003) J Catal 216:343–352

    Article  CAS  Google Scholar 

  4. Sawhill SJ, Phillips DC, Bussell ME (2003) J Catal 215:208–219

    Article  CAS  Google Scholar 

  5. Zuzaniuk V, Prins R (2003) J Catal 219:85–96

    Article  CAS  Google Scholar 

  6. Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Catal Today 143:94–107

    Article  CAS  Google Scholar 

  7. Topsøe H, Clausen B, Massoth FE (1996) Hydrotreating catalysis. In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 11. Springer-Verlag, Berlin, pp 1–310

    Google Scholar 

  8. Pawelec B, Navarro RM, Campos-Martin JM, Fierro JLG (2011) Catal Sci Technol 1:23–42

    Article  CAS  Google Scholar 

  9. Oyama ST (1992) Catal Today 15:172–200

    Article  Google Scholar 

  10. Diaz B, Sawhill SJ, Bale DH, Main R, Phillips DC, Korlann S, Self R, Bussell ME (2003) Catal Today 86:191–209

    Article  CAS  Google Scholar 

  11. Alexander A-M, Hargreaves JSJ (2010) Chem Soc Rev 39:4388–4401

    Article  CAS  Google Scholar 

  12. Hulliger F (1968) Struct Bond 4:83–229

    Article  CAS  Google Scholar 

  13. Pottgen R, Honle W, von Schering HG (2005) Encycl Inorg Chem 2:4255–4308

    Google Scholar 

  14. Gillot F, Boyanov S, Dupont L, Doublet M-L, Morcrette M, Monconduit L, Tarascon J-M (2005) Chem Mater 17:6327–6337

    Article  CAS  Google Scholar 

  15. Prytz Ø, Løvvik OM, Taftø J (2006) Phys Rev B 74:245109

    Article  CAS  Google Scholar 

  16. Fiechter S, Tributsch H, Evian M, Brec R (1987) Mater Res Bull 22:543–549

    Article  CAS  Google Scholar 

  17. Oshtrakh MI, Larionov MY, Grokhovsky VI, Semionkin VA (2011) Mater Chem Phys 130:373–380

    Article  CAS  Google Scholar 

  18. Barz H, Ku HC, Meisner GP, Fisk Z, Mattias BT (1980) Proc Natl Acad Sci USA 77:3132–4134

    Article  CAS  Google Scholar 

  19. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Nature 415:150–152

    Article  CAS  Google Scholar 

  20. Rose H (1832) Ann Phys 100:295–341

    Article  Google Scholar 

  21. Sweeny NP, Rohrer CS, Brown OW (1958) J Am Chem Soc 80:799–800

    Article  CAS  Google Scholar 

  22. Nozaki F (1976) Chem Lett 967–970

  23. Robinson WRAM, van Gestel JNM, Korányi TI, Eijsbouts S, van der Kraan AM, van Veen JAR, de Beer VHJ (1996) J Catal 161:539–550

    Article  CAS  Google Scholar 

  24. Gopalakrishnan J, Pandey S, Rangan KK (1997) Chem Mater 9:2113–2116

    Article  CAS  Google Scholar 

  25. Li W, Dhandapani B, Oyama ST (1998) Chem Lett 27:207–210

    Article  Google Scholar 

  26. Stinner C, Tang Z, Haouas M, Weber T, Prins R (2002) J Catal 208:456–466

    Article  CAS  Google Scholar 

  27. Rodriguez JA, Kim J-Y, Hanson JC, Sawhill SJ, Bussell ME (2003) J Phys Chem B 107:6276–6285

    Article  CAS  Google Scholar 

  28. Chen J, Chen Y, Yang Q, Li K, Yao C (2010) Catal Commun 11:571–575

    Article  CAS  Google Scholar 

  29. Teixeira da Silva V, Sousa LA, Amorim RM, Andrini L, Figueroa SJA, Requejo FG, Vincentini FC (2011) J Catal 279:88–102

    Article  CAS  Google Scholar 

  30. Yang S, Liang C, Prins R (2006) J Catal 241:465–469

    Article  CAS  Google Scholar 

  31. Cheng R, Shu Y, Li L, Zheng M, Wang X, Wang A, Zhang T (2007) Appl Catal A 316:160–168

    Article  CAS  Google Scholar 

  32. Wang R, Smith KJ (2009) Appl Catal A 361:18–25

    Article  CAS  Google Scholar 

  33. Whiffen VML, Smith KJ, Straus SK (2012) Appl Catal A 419–420:111–125

    Google Scholar 

  34. Clark PA, Oyama ST (2003) J Catal 218:78–87

    Article  CAS  Google Scholar 

  35. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang C, Bussell ME (2005) J Catal 231:300–313

    Article  CAS  Google Scholar 

  36. Huizinga T, van Grondelle J, Prins R (1984) Appl Catal 10:199–213

    Article  CAS  Google Scholar 

  37. Bando KK, Koike Y, Kawai T, Tateno G, Oyama ST, Inada Y, Nomura M, Asakura K (2011) J Phys Chem C 115:7466–7471

    Article  CAS  Google Scholar 

  38. Wang A, Ruan L, Teng Y, Li X, Lu M, Ren J, Wang Y, Hu Y (2005) J Catal 229:314–321

    Article  CAS  Google Scholar 

  39. Duan X, Teng Y, Wang A, Kogan VM, Li X, Wang Y (2009) J Catal 261:232–240

    Article  CAS  Google Scholar 

  40. Wu Z, Sun F, Wu W, Feng Z, Liang C, Wei Z, Li C (2004) J Catal 222:41–52

    Article  CAS  Google Scholar 

  41. Korányi T (2003) Appl Catal A 239:253–267

    Article  Google Scholar 

  42. Greenwood NN, Earnshaw A (1984) Chemistry of the elements, 1st edn. Pergamon Press, New York

    Google Scholar 

  43. Drozdova Y, Steudel R (1995) Chem Eur J 1:193–198

    Article  CAS  Google Scholar 

  44. Sendt K, Haynes BS (2005) J Phys Chem A 109:8180–8186

    Article  CAS  Google Scholar 

  45. Oyama ST, Wang X, Lee Y-K, Bando K, Requejo FG (2002) J Catal 210:207–217

    Article  CAS  Google Scholar 

  46. Oyama ST, Wang X, Lee Y-K, Chun W-J (2004) J Catal 221:263–273

    Article  CAS  Google Scholar 

  47. Layman KA, Bussell ME (2004) J Phys Chem B 108:10930–10941

    Article  CAS  Google Scholar 

  48. Bando KK, Wada T, Miyamoto T, Miyazaki K, Takakusagi S, Koike Y, Inada Y, Nomura M, Yamaguchi A, Gott T, Oyama ST, Asakura K (2012) J Catal 286:165–171

    Article  CAS  Google Scholar 

  49. Nelson AE, Sun M, Junaid ASM (2006) J Catal 241:180–188

    Article  CAS  Google Scholar 

  50. Teng Y, Wang A, Li X, Xie J, Wang Y, Hu Y (2009) J Catal 266:369–379

    Article  CAS  Google Scholar 

  51. Loboué H, Guillot-Deudon C, Popa AF, Lafond A, Rebours B, Pichon C, Cseri T, Berhault G, Geantet C (2008) Catal Today 130:69–74

    Article  CAS  Google Scholar 

  52. Yang S, Prins R (2005) Chem Commun 33:4178–4180

    Article  CAS  Google Scholar 

  53. Yang S, Liang C, Prins R (2006) J Catal 237:118–130

    Article  CAS  Google Scholar 

  54. Song L, Li W, Wang G, Zhang M, Tao K (2007) Catal Today 125:137–142

    Article  CAS  Google Scholar 

  55. Yang S, Liang C, Prins R (2006) Stud Surf Sci Catal 162:307–314

    Article  CAS  Google Scholar 

  56. Sun F, Wu W, Wu Z, Guo J, Wei Z, Yang Y, Jiang Z, Tian F, Li C (2004) J Catal 228:298–310

    Article  CAS  Google Scholar 

  57. Deng J, Zhang X, Min E (1988) Appl Catal 37:339–343

    Article  CAS  Google Scholar 

  58. Li H, Wang W, Li H, Deng J-F (2000) J Catal 194:211–221

    Article  CAS  Google Scholar 

  59. Ko SH, Chou TC (1993) Ind Eng Chem Res 32:1579–1587

    Article  CAS  Google Scholar 

  60. Ni Y, Tao A, Hu G, Cao X, Wei X, Yang Z (2006) Nanotechnology 17:5013–5018

    Article  CAS  Google Scholar 

  61. Guan Q, Li W, Zhang M, Tao K (2009) J Catal 263:1–3

    Article  CAS  Google Scholar 

  62. Shi G, Shen J (2009) J Mater Chem 19:2295–2297

    Article  CAS  Google Scholar 

  63. Shi G, Shen J (2009) Catal Commun 10:1693–1696

    Article  CAS  Google Scholar 

  64. Bowker RH, Smith MC, Pease ML, Slenkamp KM, Kovarik L, Bussell ME (2011) ACS Catal 1:917–922

    Article  CAS  Google Scholar 

  65. Guan Q, Sun C, Li R, Li W (2011) Catal Commun 14:114–117

    Article  CAS  Google Scholar 

  66. Guan Q, Li W (2010) J Catal 271:413–415

    Article  CAS  Google Scholar 

  67. Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2009) J Catal 263:4–15

    Article  CAS  Google Scholar 

  68. Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2009) J Phys Chem C 113:17032–17044

    Article  CAS  Google Scholar 

  69. Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2009) Appl Catal B 92:100–113

    Article  CAS  Google Scholar 

  70. Infantes-Molina A, Moreno-León C, Pawelec B, Fierro JLG, Rodríguez-Castellón E, Jiménez-López A (2012) Appl Catal B 113–114:87–99

    Google Scholar 

  71. Song L, Zhang S, Wei Q (2011) Catal Commun 12:1157–1160

    Article  CAS  Google Scholar 

  72. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  73. Wang A, Qin M, Guan J, Wang L, Guo H, Li X, Wang Y, Prins R, Hu Y (2008) Angew Chem Int Ed 47:6052–6054

    CAS  Google Scholar 

  74. Guan J, Wang Y, Qin M, Yang Y, Li X, Wang A (2009) J Solid State Chem 182:1550–1555

    Article  CAS  Google Scholar 

  75. Perera SC, Tsoi G, Wenger LE, Brock SL (2003) J Am Chem Soc 125:13960–13961

    Article  CAS  Google Scholar 

  76. Perera SC, Fodor PS, Tsoi GM, Wenger LE, Brock SL (2003) Chem Mater 15:4034–4038

    Article  CAS  Google Scholar 

  77. Qian C, Kim F, Ma L, Tsui F, Yang P, Liu J (2004) J Am Chem Soc 126:1195–1198

    Article  CAS  Google Scholar 

  78. Park J, Koo B, Yoon K, Hwang Y, Kang M, Park J-G, Hyeon T (2005) J Am Chem Soc 127:8433–8440

    Article  CAS  Google Scholar 

  79. Senevirathne K, Burns AW, Bussell ME, Brock SL (2007) Adv Funct Mater 17:3933–3939

    Article  CAS  Google Scholar 

  80. Henkes AE, Vasquez Y, Schaak RE (2007) J Am Chem Soc 129:1896–1897

    Article  CAS  Google Scholar 

  81. Yoon KY, Jang Y, Park J, Hwang Y, Koo B, Park J-G, Hyeon T (2008) J Solid State Chem 181:1609–1613

    Article  CAS  Google Scholar 

  82. Muthuswamy E, Layan Savithra GH, Brock SL (2011) ACS Nano 5:2402–2411

    Article  CAS  Google Scholar 

  83. Henkes AE, Schaak RE (2008) Inorg Chem 47:671–677

    Article  CAS  Google Scholar 

  84. Muthuswamy E, Brock SL (2010) J Am Chem Soc 132:15849–15851

    Article  CAS  Google Scholar 

  85. Cho K-Y, Seo H-R, Lee Y-K (2011) Catal Commun 12:470–474

    Article  CAS  Google Scholar 

  86. Wang Z, Zhou L, Zhang M, Li W, Tao K (2009) Chem Asian J 4:1794–1797

    CAS  Google Scholar 

  87. Lukehart CM, Milne B, Stock SR (1998) Chem Mater 10:903–908

    Article  CAS  Google Scholar 

  88. Schweyer-Tihay F, Braunstein P, Estournès C, Guille JL, Lebeau B, Paillaud J-L, Richard-Plouet M, Rosé J (2003) Chem Mater 15:57–62

    Article  CAS  Google Scholar 

  89. Jarvis RF, Jacubinas RM, Kaner RB (2000) Inorg Chem 39:3243–3246

    Article  CAS  Google Scholar 

  90. Qian XF, Zhang XM, Wang C, Wang WZ, Qian YT (1998) Mater Res Bull 33:669–672

    Article  CAS  Google Scholar 

  91. Qian XF, Xie Y, Qian YT, Zhang XM, Wang WZ, Yang L (1997) Mater Sci Eng B 49:135–137

    Article  Google Scholar 

  92. Gu Y, Guo F, Qian YT, Zheng H, Yang Z (2002) Mater Res Bull 37:1101–1105

    Article  CAS  Google Scholar 

  93. Barry BM, Gillan EG (2008) Chem Mater 20:2618–2620

    Article  CAS  Google Scholar 

  94. Xie Y, Su HL, Qian XF, Liu XM, Qian YT (2000) J Solid State Chem 149:88–91

    Article  CAS  Google Scholar 

  95. Hou H, Yang Q, Tan C, Ji G, Gu B, Xie Y (2004) Chem Lett 33:1272–1273

    Article  CAS  Google Scholar 

  96. Aitken JA, Ganzha-Hazen VL, Brock SL (2005) J Solid State Chem 178:970–975

    Article  CAS  Google Scholar 

  97. Ding L, Zheng M, Wang A, Zhang T (2010) Catal Lett 135:305–311

    Article  CAS  Google Scholar 

  98. Tao H-S, Diebold U, Shinn ND, Madey TE (1997) Surf Sci 375:257–267

    Article  CAS  Google Scholar 

  99. Oyama ST, Zhao H, Freund H-J, Asakura K, Wlodarczyk R, Sierka M (2012) J Catal 285:1–5

    Article  CAS  Google Scholar 

  100. Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) J Phys Chem B 109:4575–4583

    Article  CAS  Google Scholar 

  101. Sachtler WHM, van Santen RA (1977) Adv Catal 26:69–119

    Article  CAS  Google Scholar 

  102. Moula GM, Suzuki S, Chun W-J, Otani S, Oyama ST, Asakura K (2006) Chem Lett 35:90–91

    Article  CAS  Google Scholar 

  103. Suzuki S, Moula GM, Miyamoto T, Nakagawa Y, Kinosthita K, Asakura K, Oyama ST, Otani S (2009) J Nanosci Nanotechnol 9:195–201

    Article  CAS  Google Scholar 

  104. Li Q, Hu X (2006) Phys Rev B 74:035414

    Article  CAS  Google Scholar 

  105. Hernandez AB, Ariga H, Takakusagi S, Kinoshita K, Suzuki S, Otani S, Oyama ST, Asakura K (2011) Chem Phys Lett 513:48–52

    Article  CAS  Google Scholar 

  106. Guo D, Nakagawa Y, Ariga H, Suzuki S, Kinoshita K, Miyamoto T, Takakusagi S, Asakura K, Otani S, Oyama ST (2010) Surf Sci 604:1347–1352

    Article  CAS  Google Scholar 

  107. Kinoshita K, Simon GH, König T, Heyde M, Freund H-J, Nakagawa Y, Suzuki S, Chun W-J, Oyama ST, Otani S, Asakura K (2008) Jpn J Appl Phys 47:6088–6091

    Article  CAS  Google Scholar 

  108. Ma D, Xiao T, Xie S, Zhou W, Gonzalez-Cortes SL, Green MLH (2004) Chem Mater 16:2697–2699

    Article  CAS  Google Scholar 

  109. Fruchart R, Roger A, Senateur JP (1969) J Appl Phys 40:1250–1257

    Article  CAS  Google Scholar 

  110. Gaudette AF, Burns AW, Hayes JR, Smith MC, Seda T, Bussell ME (2010) J Catal 272:18–27

    Article  CAS  Google Scholar 

  111. Abu II, Smith KJ (2006) J Catal 241:356–366

    Article  CAS  Google Scholar 

  112. Abu II, Smith KJ (2007) Catal Today 125:248–255

    Article  CAS  Google Scholar 

  113. Burns AW, Gaudette AF, Bussell ME (2008) J Catal 260:262–269

    Article  CAS  Google Scholar 

  114. Goodenough JB (1973) J Solid State Chem 7:428–447

    Article  CAS  Google Scholar 

  115. Artigas M, Bacmann M, Boursier D, Fruchart D, Fruchart R, Soubeyroux JL (1992) C R Acad Sci Paris Sér 2(315):29–34

    Google Scholar 

  116. Blanchard PER, Grosvenor AP, Cavell RG, Mar A (2009) J Mater Chem 19:6015–6022

    Article  CAS  Google Scholar 

  117. Pecoraro TA, Chianelli RR (1981) J Catal 67:430–455

    Article  CAS  Google Scholar 

  118. Vissers JPR, Groot CK, van Oers EM, de Beer VHJ, Prins R (1984) Bull Soc Chim Belg 93:813–821

    Article  CAS  Google Scholar 

  119. Ledoux MJ, Michaux O, Agostini G (1986) J Catal 102:275–288

    Article  CAS  Google Scholar 

  120. Frimmel J, Zdrazil M (1997) J Catal 167:286

    Article  CAS  Google Scholar 

  121. Raje AP, Liaw SJ, Davis BH (1997) Appl Catal A 150:297

    Article  CAS  Google Scholar 

  122. Hensen EJM, Brans HJA, Lardinois GMHJ, de Beer VHJ, van Veen JAR, van Santen RA (2000) J Catal 192:98–107

    Article  CAS  Google Scholar 

  123. Hermann N, Brorson M, Topsøe H (2000) Catal Lett 65:169–174

    Article  CAS  Google Scholar 

  124. Reinhoudt HR, Troost R, van Langeveld AD, Sie ST, van Veen JAR, Moulijn JA (1999) Fuel Process Technol 61:133–147

    Article  CAS  Google Scholar 

  125. Barrio VL, Arias PL, Cambra JF, Güemez MB, Pawelec B, Fierro JLG (2003) Fuel 82:501–509

    Article  CAS  Google Scholar 

  126. Ishihara A, Dumeignil F, Lee J, Mitsuhashi K, Qian EW, Kabe T (2005) Appl Catal A 289:163–173

    Article  CAS  Google Scholar 

  127. Niquille-Röthlisberger A, Prins R (2006) J Catal 242:207–216

    Article  CAS  Google Scholar 

  128. Niquille-Röthlisberger A, Prins R (2007) Catal Today 123:198–207

    Article  CAS  Google Scholar 

  129. Giraldo SA, Pinzon MH, Centeno A (2008) Catal Today 133–135:239–243

    Article  CAS  Google Scholar 

  130. Kanda Y, Seino A, Kobayashi T, Uemichi Y, Sugioka M (2009) J Jpn Pet Inst 52:42–50

    Article  CAS  Google Scholar 

  131. Sweeney CM, Stamm KL, Brock SL (2008) J Alloys Compd 448:122–127

    Article  CAS  Google Scholar 

  132. Carlsson A, Oku T, Bovin J-O, Wallenberg R, Malm J-O, Schmid G, Kubicki T (1998) Angew Chem Int Ed 37:1218–1220

    Article  CAS  Google Scholar 

  133. Henkes AE, Schaak RE (2007) Chem Mater 19:4234–4242

    Article  CAS  Google Scholar 

  134. Barry BM, Gillan EG (2009) Chem Mater 21:4454–4461

    Article  CAS  Google Scholar 

  135. Hayes JR, Bowker RH, Gaudette AF, Smith MC, Moak CE, Nam CY, Pratum TK, Bussell ME (2010) J Catal 276:249–258

    Article  CAS  Google Scholar 

  136. Kanda Y, Temma C, Nakata K, Kobayashi T, Sugioka M, Uemichi Y (2010) Appl Catal A 386:171–178

    Article  CAS  Google Scholar 

  137. Bowker RH, Smith MC, Carrillo BA, Bussell ME (2012) Top Catal 55:999–1009

    Article  CAS  Google Scholar 

  138. Ozawa TC, Kang SJ (2004) J Appl Crystallogr 37:679

    Article  CAS  Google Scholar 

  139. Zumbusch M (1940) Z Anorg Allg Chem 243:322–329

    Article  CAS  Google Scholar 

  140. Rundqvist S, Hede A (1960) Acta Chem Scand 14:893–902

    Article  CAS  Google Scholar 

  141. Ross RG, Hume-Rothery W (1963) J Less Common Met 5:258–270

    Article  CAS  Google Scholar 

  142. Shein IR, Ivanovskii AL (2003) Russ J Inorg Chem 48:391–396

    Google Scholar 

  143. Rundqvist S (1960) Acta Chem Scand 14:1961–1979

    Article  CAS  Google Scholar 

  144. Rundqvist S, Gullman L-O (1960) Acta Chem Scand 14:2246–2247

    Article  CAS  Google Scholar 

  145. Aronsson B, Rundqvist S (1962) Acta Cryst 15:878–887

    Article  CAS  Google Scholar 

  146. Furo I, Bakonyi I, Tompa K, Zsoldos E, Heinmaa I, Alla M, Lippmaa E (1990) J Phys Condens Matter 2:4217–4225

    Article  CAS  Google Scholar 

  147. Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuels 20:848–889

    Article  CAS  Google Scholar 

  148. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  149. Elliott DC (2007) Energy Fuels 21:1792–1815

    Article  CAS  Google Scholar 

  150. Venderbosch RH, Prins W (2010) Biofuels Bioprod Bioref 4:178–208

    Article  CAS  Google Scholar 

  151. Huber GW, Corma A (2007) Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  152. Whiffen VM, Smith KJ (2010) Energy Fuels 24:4728–4737

    Article  CAS  Google Scholar 

  153. Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305–310

    Article  CAS  Google Scholar 

  154. Li K, Wang R, Chen J (2011) Energy Fuels 25:854–863

    Article  CAS  Google Scholar 

  155. Gagnon J, Kaliaguine S (1988) Ind Eng Chem Res 27:1783–1788

    Article  CAS  Google Scholar 

  156. Centeno A, Maggi R, Delmon B (1999) Stud Surf Sci Catal 127:77–84

    Article  CAS  Google Scholar 

  157. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Ind Eng Chem 48:10324–10334

    Article  CAS  Google Scholar 

  158. Elliot DC, Hart TR (2009) Energy Fuels 23:631–647

    Article  CAS  Google Scholar 

  159. de Wild P, Van der Laan R, Kloekhorst A, Heeres HJ (2009) Environ Prog Sustainable Energy 28:461–469

    Article  CAS  Google Scholar 

  160. Olcay H, Xu L, Xu Y, Huber GW (2010) ChemCatChem 2:1420–1424

    Article  CAS  Google Scholar 

  161. Venderbosch RH, Ardiyanti AR, Wildschut J, Oasmaa A, Heeres HJ (2010) J Chem Technol Biotechnol 85:674–686

    Article  CAS  Google Scholar 

  162. de Miguel Mercader F, Groeneveld MJ, Kersten SRA, Way NWJ, Schaverlen CJ, Hogendoorn JA (2010) Appl Catal B 96:57–66

    Article  CAS  Google Scholar 

  163. Furimsky E (1983) Appl Catal 6:159–164

    Article  CAS  Google Scholar 

  164. Liang C, Zhao A, Zhang X, Ma Z, Prins R (2009) Chem Commun 2047–2049

  165. Chen X, Zhang B, Li C, Shao Z, Su D, Williams CT, Liang C (2012) Mater Res Bull 47:867–877

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The participation of one of us (MEB) in the preparation of this review was supported in part by the National Science Foundation under Grant number CHE-0809433. The authors acknowledge Professor Stephanie Brock for helpful discussion and comments on a draft of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Bussell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prins, R., Bussell, M.E. Metal Phosphides: Preparation, Characterization and Catalytic Reactivity. Catal Lett 142, 1413–1436 (2012). https://doi.org/10.1007/s10562-012-0929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0929-7

Keywords

Navigation