Skip to main content

Advertisement

Log in

The Direct Hydroxylation of Benzene to Phenol Catalyzed by Fe-ZSM-5 Zeolite: A DFT and Hybrid MP2:DFT Calculation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The title reactions over FeIII and FeII-ZSM-5 zeolites are divided into seven and six steps, wherein the M06L:B3LYP energy barriers of N2O decomposition to form active site, benzene activation to form C–O bond and proton transfer to form phenol are equal to 37.0, 13.7, 17.2 and 33.7, 3.0, 19.1 kcal mol−1, respectively. The active site of FeIII-ZSM-5 zeolite is geometrically distinct from smaller cluster models and requires conformational transitions before further reactions. The effects of basis sets on reaction energies are carefully investigated, confirming the reliability of default basis sets. The energy differences of MP2:B3LYP with M06L:B3LYP are mainly caused by those steps where adsorbents move significantly within zeolites. Adsorption of benzene is unfavorable in Fe-ZSM-5 zeolite, especially for the divalent state. This is caused by larger repulsive interactions with zeolite framework and will be greatly reduced when forming C–O bond. Adsorbents have nearly no migrations for proton-transfer steps to form phenol, wherein the energy barriers are consistent at these two levels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The frequency calculations were performed using the 5-T cluster models described in [21, 23]. A scaling factor of 0.96 was derived by comparing the calculated and experimental vibrational frequencies of the OH groups in the gas-phase water molecule.

References

  1. Panov GI, Uriarte AK, Rodkin MA, Sobolev VI (1998) Catal Today 41:365

    Article  CAS  Google Scholar 

  2. Dubkov KA, Ovanesyan NS, Shteinman AA, Starokon EV, Panov GI (2002) J Catal 207:341

    Article  CAS  Google Scholar 

  3. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Phys Chem Chem Phys 9:3483

    Article  CAS  Google Scholar 

  4. Yang G, Guan J, Zhou LJ, Liu XC, Han XW, Bao XH (2010) Catal Surv Asia 14:85 and references therein

    Article  CAS  Google Scholar 

  5. Marturano P, Drozdová L, Kogelbauer A, Prins R (2000) J Catal 192:236

    Article  CAS  Google Scholar 

  6. Hensen EJM, Zhu Q, van Santen RA (2003) J Catal 220:260

    Article  CAS  Google Scholar 

  7. Sklenak S, Andrikopoulos PC, Boekfa B, Jansang B, Nováková J, Benco L, Bucko T, Hafner J, Dědeček J, Sobalík Z (2010) J Catal 272:262

    Article  CAS  Google Scholar 

  8. Ryder JA, Chakraborty AK, Bell AT (2002) J Phys Chem B 106:7059

    Article  CAS  Google Scholar 

  9. Choi SH, Wood BR, Ryder JA, Bell AT (2003) J Phys Chem B 107:11843

    Article  CAS  Google Scholar 

  10. Yang G, Zhou DH, Liu XC, Han XW, Bao XH (2006) J Mol Struct 797:131

    Article  CAS  Google Scholar 

  11. Hansen N, Heyden A, Bell AT, Keil FJ (2007) J Phys Chem C 111:2092

    Article  CAS  Google Scholar 

  12. Fellah MF, Pidko EA, van Santen RA, Onal I (2011) J Phys Chem C 115:9668

    Article  CAS  Google Scholar 

  13. Rivallan M, Ricchiardi G, Bordiga S, Zecchina A (2009) J Catal 264:104

    Article  CAS  Google Scholar 

  14. Yakovlev AL, Zhidomirov GM, van Santen RA (2001) J Phys Chem B 105:12297

    Article  CAS  Google Scholar 

  15. Yoshizawa K, Shiota Y, Takashi K (2003) J Phys Chem B 107:11404

    Article  CAS  Google Scholar 

  16. Ryder JA, Chakraborty AK, Bell AT (2003) J Catal 220:84

    Article  CAS  Google Scholar 

  17. Pantu P, Pabchanda S, Limtrakul J (2004) Chem Phys Chem 5:1901

    Article  CAS  Google Scholar 

  18. Martínez A, Goursot A, Coq B, Belahay G (2004) J Phys Chem B 108:8823

    Article  Google Scholar 

  19. Shiota Y, Suzuki K, Yoshizawa K (2006) Organometallics 25:3118

    Article  CAS  Google Scholar 

  20. Fellah MF, Onal I, van Santen RA (2010) J Phys Chem C 114:12580

    Article  CAS  Google Scholar 

  21. Yang G, Zhou LJ, Liu XC, Han XW, Bao XH (2009) J Phys Chem C 113:18184

    Article  CAS  Google Scholar 

  22. Li GN, Pidko EA, van Santen RA, Feng ZC, Li C, Hensen EJM (2011) J Catal 284:194

    Article  CAS  Google Scholar 

  23. Yang G, Zhou LJ, Liu XC, Han XW, Bao XH (2006) J Phys Chem B 110:22295

    Article  CAS  Google Scholar 

  24. de Moor BA, Reyniers MF, Sierka M, Sauer J (2008) J Phys Chem C 112:11796

    Article  Google Scholar 

  25. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks G W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill MWP, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc., Wallingford

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford

  28. Yang G, Zhou LJ, Liu CB (2009) J Phys Chem B 113:10399

    Article  CAS  Google Scholar 

  29. Yang G, Guan J, Zhou LJ, Liu XC, Han XW, Bao XH (2009) J Photochem Photobiol A 202:122

    Article  CAS  Google Scholar 

  30. Yang G, Zhou LJ, Liu XC, Han XW, Bao XH (2011) Chem Eur J 17:1614

    Article  CAS  Google Scholar 

  31. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  32. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029

    Article  CAS  Google Scholar 

  33. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  34. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  35. Lobree LJ, Hwang IC, Reimer JA, Bell AT (1999) J Catal 186:242

    Article  CAS  Google Scholar 

  36. Nobukawa T, Yoshida M, Kameoka S, Ito S, Tomishige K, Kunimori K (2004) Catal Today 93–95:791

    Article  Google Scholar 

  37. Ates A, Reitzmann A, Waters G (2012) Appl Catal B 119–120:329

    Google Scholar 

  38. Yang G, Zhou LJ, Liu XC, Han XW, Bao XH (2012) Microporous Mesoporous Mater 161:168

    Article  CAS  Google Scholar 

  39. Hensen EJM, Zhu Q, Janssen RAJ, Magusin PCMM, Kooyman PJ, van Santen RA (2005) J Catal 233:123

    Article  CAS  Google Scholar 

  40. Fellah MF, Onal I, van Santen RA (2010) J Phys Chem C 114:12580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged the financial supports from the National Natural Science Foundation (No. 20903019) and Ministry of Science and Technology of the Peoples’ Republic of China (2003CB615806). We thank Shanghai Supercomputing Center for the computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Yang, G., Liu, X. et al. The Direct Hydroxylation of Benzene to Phenol Catalyzed by Fe-ZSM-5 Zeolite: A DFT and Hybrid MP2:DFT Calculation. Catal Lett 143, 260–266 (2013). https://doi.org/10.1007/s10562-012-0953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0953-7

Keywords

Navigation