Skip to main content
Log in

Hydrogen Production by Water Gas Shift Reaction Over Pd–K Impregnated Co Oxide Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Effects of K and Pd loading on Co3O4 catalyst for the water gas shift (WGS) reaction were investigated. Pd/K/Co3O4 catalyst showed high and stable activity and high selectivity to WGS. Regarding loading amounts of Pd and K, the latter is important for WGS activity and selectivity. XRD, XAFS, and TPR measurements confirmed potassium loading benefits. Supported Pd promoted oxidation of CO with lattice oxygen. The synergetic effect of these functions of K and Pd protected high catalyst activity and stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ratnasamy C, Wagner JP (2009) Catal Rev Sci Eng 51:325

    Article  CAS  Google Scholar 

  2. Lloyd L (2011) Handbook of industrial catalysts. Springer Science + Business Media, New York

    Book  Google Scholar 

  3. Newsome DS (1980) Catal Rev Sci Eng 21:275

    Article  CAS  Google Scholar 

  4. Iida H, Igarashi A (2006) Appl Catal A Gen 303:48

    Article  CAS  Google Scholar 

  5. Iida H, Igarashi A (2006) Appl Catal A Gen 298:152

    Article  CAS  Google Scholar 

  6. Gorte RJ, Zhao S (2005) Catal Today 104:18

    Article  CAS  Google Scholar 

  7. Bunluesin T, Gorte TJ, Graham GW (1998) Appl Catal B Environ 15:107

    Article  CAS  Google Scholar 

  8. Panagiotopoulou P, Kondarides DI (2004) J Catal 225:327

    Article  CAS  Google Scholar 

  9. Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Top Catal 44:199

    Article  CAS  Google Scholar 

  10. Jacobs G, Williams L, Graham U, Sparks D, Davis BH (2003) J Phys Chem B 107:10398

    Article  CAS  Google Scholar 

  11. Basinska A, Domka F (1997) Catal Lett 43:59

    Article  CAS  Google Scholar 

  12. Zhai Y, Pierre C, Si R, Deng W, Ferrin P, Nilekar AU, Peng G, Herron JA, Bell DC, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M (2010) Science 329:1633

    Article  CAS  Google Scholar 

  13. Jóźwiak WK, Maniecki TP, Basińska A, Góralski J, Fiedorow R (2004) Kinet Catal 45:879

    Article  Google Scholar 

  14. Amenomiya Y, Pleizier G (1982) J Catal 76:345

    Article  CAS  Google Scholar 

  15. Hu X, Lu G (2009) Green Chem 11:724

    Article  CAS  Google Scholar 

  16. Pazmino JH, Shekhar M, Williams WD, Akatay MC, Miller JT, Delgass WN, Ribeiro FH (2012) J Catal 286:279

    Article  CAS  Google Scholar 

  17. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2007) Appl Catal A Gen 328:14

    Article  CAS  Google Scholar 

  18. Sekine Y, Chihara T, Watanabe R, Sakamoto Y, Matsukata M, Kikuchi E (2010) Catal Lett 140:184

    Article  CAS  Google Scholar 

  19. Watanabe R, Sakamoto Y, Yamamuro K, Tamura S, Kikuchi E, Sekine Y (2013) Appl Catal (submitted)

  20. Hakkarainen R, Salmi T, Keiski RL (1993) Appl Catal A Gen 99:195

    Article  CAS  Google Scholar 

  21. Hla SS, Duffy GJ, Morpeth LD, Cousins A, Roberts DG, Edwards JH, Park D (2010) Asia Pac J Chem Eng 5:585

    Article  CAS  Google Scholar 

  22. Kettman V, Balgavy P, Sokol L (1988) J Catal 112:93

    Article  Google Scholar 

  23. Nikolova D, Edreva-Kardjieva R, Gouliev G, Grozeva T, Tzvetkov P (2006) Appl Catal A Gen 297:135

    Article  CAS  Google Scholar 

  24. Park J, Kim J, Lee H (2000) Bull Korean Chem Soc 21:1239

    CAS  Google Scholar 

  25. Aldridge CL, Kalina T, US patent 3850840

  26. Aldridge CL, Kalina T, US patent 3850841

  27. Lund CRF (1996) Ind Eng Chem Res 35:3067

    Article  CAS  Google Scholar 

  28. Antoniak K, Kowalik P, Próchniak W, Konkol M, Wach A, Kuśtrowski P, Ryczkowski J (2012) Appl Catal A Gen 423–424:114

    Article  Google Scholar 

  29. Wang H, Lian Y, Li Y, Fang W, Yang Y (2009) Catal Comm 126:1864

    Article  Google Scholar 

  30. Xie X, Yin H, Dou B, Huo J (1991) Appl Catal 77:187

    Article  CAS  Google Scholar 

  31. Lian Y, Xiao R, Fang W, Yang Y (2011) J Nat Gas Chem 20:77

    Article  CAS  Google Scholar 

  32. Nagai M, Zahidul AM, Kunisaki Y, Aoki Y (2010) Appl Catal A Gen 383:58

    Article  CAS  Google Scholar 

  33. Gottshalk FM, Copperthwaite RG, Vanderriet M, Hutchings GJ (1988) Appl Catal 38:103

    Article  Google Scholar 

  34. Hutchings GJ, Copperthwaite RG, Gottshalk FM, Hunter R, Mellor J, Orchard SW, Sangiorgio T (1992) J Catal 137:408

    Article  CAS  Google Scholar 

  35. Bajusz I, Kwik DJ, Goodwin JG Jr (1997) Catal Lett 48:151

    Article  CAS  Google Scholar 

  36. Dai CH, Worley SD (1986) J Phys Chem 90:4219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sekine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamuro, K., Tamura, S., Watanabe, R. et al. Hydrogen Production by Water Gas Shift Reaction Over Pd–K Impregnated Co Oxide Catalyst. Catal Lett 143, 339–344 (2013). https://doi.org/10.1007/s10562-013-0974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-0974-x

Keywords

Navigation