Skip to main content

Advertisement

Log in

An Efficient Catalyst for the Conversion of Fructose into Methyl Levulinate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic alcoholysis of fructose in methanol to methyl levulinate was performed by using phosphotungstic acid iron catalysts. The catalysts were characterized by powder X-ray diffraction, infrared spectroscopy, and X-ray fluorescence spectroscopy. The results showed that the exchanging of H+ with Fe3+ ions could modify the acidity of H3PW12O40 and introduce some Lewis acidity into the molecules. The highest yield of methyl levulinate was obtained over the Fe-HPW-1 catalyst. This catalyst showed 100 % fructose conversion with 73.7 % yield of methyl levulinate at 130 °C, 2 MPa for 2 h, and it could be reused at least five times without obvious loss of activity. The results suggest that the combination of Brønsted acidity with some Lewis acidity could effectively promote the conversion of fructose in methanol to methyl levulinate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Balat M, Balat H (2010) Appl Energy 87:1815

    Article  CAS  Google Scholar 

  2. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Energy Rev 14:578

    CAS  Google Scholar 

  3. Govindaswamy S, Vane LM (2010) Bioresour Technol 101:1277

    Article  CAS  Google Scholar 

  4. Girisuta B, Janssen LPBM, Heeres HJ (2006) Chem Eng Res Des 84:339

    Article  CAS  Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  6. Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FMFM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green Chem 8:853

    Article  CAS  Google Scholar 

  7. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  8. Digman B, Joo HS, Kim DS (2009) Environ Prog Sustain Energy 28:47

    Article  CAS  Google Scholar 

  9. Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479

    Article  CAS  Google Scholar 

  10. Hayes DJ (2009) Catal Today 145:138

    Article  CAS  Google Scholar 

  11. Olson ES, Kjelden MR, Schlag AJ (2001) ACS Symp Ser 784:51

    Article  CAS  Google Scholar 

  12. Mascal M, Nikitin EB (2010) Green Chem 12:370

    Article  CAS  Google Scholar 

  13. Le Van Mao R, Zhao Q, Dima G, Petraccone D (2011) Catal Lett 141:271

    Article  Google Scholar 

  14. Yaaini N, Amin NAS, Asmadi M (2012) Bioresour Technol 116:58

    Article  CAS  Google Scholar 

  15. Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Tetrahedron Lett 51:2356

    Article  CAS  Google Scholar 

  16. Hu X, Li CZ (2011) Green Chem 13:1676

    Article  CAS  Google Scholar 

  17. Peng L, Lin L, Zhang J, Zhang B, Gong Y (2010) Molecules 15:5258

    Article  CAS  Google Scholar 

  18. Saravanamurugan S, Van Nguyen Buu O, Riisager A (2011) ChemSusChem 4:723

    Article  CAS  Google Scholar 

  19. Saravanamurugan S, Riisager A (2012) Catal Commun 17:71

    Article  CAS  Google Scholar 

  20. Peng L, Lin L, Zhang J, Shi J, Li S (2011) Appl Catal A 397:259

    Article  CAS  Google Scholar 

  21. Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K (2011) Green Chem 13:810

    Article  CAS  Google Scholar 

  22. Rataboul F, Essayem N (2011) Ind Eng Chem Res 50:799

    Article  CAS  Google Scholar 

  23. Wu XY, Fu J, Lu XY (2012) Carbohydr Res 358:37

    Article  CAS  Google Scholar 

  24. Peng LC, Lin L, Li H, Yang QL (2011) Appl Energy 88:4590

    Article  CAS  Google Scholar 

  25. Mascal M, Nikitin EB (2010) ChemSusChem 3:1349

    Article  CAS  Google Scholar 

  26. Peng L, Lin L, Li H (2012) Ind Crops Prod 40:136

    Article  CAS  Google Scholar 

  27. Shimizu K-i, Niimi K, Satsuma A (2008) Appl Catal A: Gen 349:1

    Article  CAS  Google Scholar 

  28. Shimizu K-I, Furukawa H, Kobayashi N, Itay Y, Satsuma A (2009) Green Chem 11:1627

    Article  CAS  Google Scholar 

  29. Shimizu K-i, Niimi K, Satsuma A (2008) Catal Commun 9:980

    Article  CAS  Google Scholar 

  30. Okuhara T (2002) Chem Rev 102:3641

    Article  CAS  Google Scholar 

  31. Kozhevnikov IV (1998) Chem Rev 98:171

    Article  CAS  Google Scholar 

  32. Zhu S, Gao X, Dong F, Zhu Y, Zheng H, Li Y (2013) J Catal 306:155

    Article  CAS  Google Scholar 

  33. Misono M, Ono I, Koyano G, Aoshima A (2000) Pure Appl Chem 72:1305

    Article  CAS  Google Scholar 

  34. Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Biomass Bioenerg 35:2659

    Article  CAS  Google Scholar 

  35. Jia X, Ma J, Che P, Lu F, Miao H, Gao J, Xu J (2013) J Energ Chem 22:93

    Article  CAS  Google Scholar 

  36. Wang FF, Liu CL, Dong WS (2013) Green Chem 15:2091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20976101), the Program for Key Science and Technology Innovation Team of Shaanxi Province (2012KCT-21), the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Sheng Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, CL., Wu, HZ. et al. An Efficient Catalyst for the Conversion of Fructose into Methyl Levulinate. Catal Lett 143, 1346–1353 (2013). https://doi.org/10.1007/s10562-013-1094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1094-3

Keywords

Navigation