Skip to main content
Log in

Exploring Zeolite Chemistry with the Tools of Surface Science: Challenges, Opportunities, and Limitations

Catalysis Letters Aims and scope Submit manuscript

Abstract

The complexity of catalysts that the surface science community has been able to address has increased substantially in a systematic manner, starting with metal and oxide single crystal surfaces and evolving to an atomistic description of clusters and nanoparticles on well-defined, planar supports. The next step in adding complexity is now to address surfaces of porous oxide materials, in particular of zeolites, which are the most extensively used catalysts in the industry. The recently reported successful fabrication of well-ordered thin films, consisting of planar arrangement of aluminosilicate polygonal prisms on a metal substrate counting with highly acidic bridging hydroxyl groups on the surface, represents the limiting case of infinitely large pore and cages in zeolites. This model system allows one to study reactions catalyzed by zeolites using the toolkit of surface science. In this Perspective, we describe the zeolitic model system, with its virtues and limitations, as well as the challenges, opportunities and expectations for the future in modelling porous catalysts by a surface science approach.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Somorjai GA, Park JY (2009) Surf Sci 603(10–12):1293–1300

    Article  CAS  Google Scholar 

  2. Ertl G (1994) Surf Sci 299(1–3):742–754

    Article  Google Scholar 

  3. Somorjai GA, Li YM (2010) Top Catal 53(5–6):311–325

    Article  CAS  Google Scholar 

  4. Ertl G (2008) Angew Chem Int Ed 47(19):3524–3535

    Article  CAS  Google Scholar 

  5. Freund H-J, Shaikhutdinov S, Nilius N (2014) Top Catal 57(10–13):822–832

    Article  CAS  Google Scholar 

  6. Haw JF (2002) Phys Chem Chem Phys 4:5431–5441

    Article  CAS  Google Scholar 

  7. Martínez C, Corma A (2011) Coord Chem Rev 255(13–14):1558–1580

    Article  Google Scholar 

  8. Yilmaz B, Müller U (2009) Top Catal 52:888–895

    Article  CAS  Google Scholar 

  9. Corma A (1995) Chem Rev 95(3):559–614

    Article  CAS  Google Scholar 

  10. Baerlocher C, McCusker LB, (Accessed 07/01/2014)

  11. Foster MD, Treacy MMJ A Database of Hypothetical Zeolite Structures: http://www.hypotheticalzeolites.net, (accessed 08/17/14)

  12. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of Zeolite Framework Types, 6th edn. Elsevier B. V, Amsterdam

    Google Scholar 

  13. Lupulescu AI, Rimer JD (2014) Science 344(6185):729–732

    Article  CAS  Google Scholar 

  14. Weisenhorn AL, Mac Dougall JE, Gould SAC, Cox SD, Wise WS, Massie J, Maivald P, Elings VB, Stucky GD, Hansma PK (1990) Science 247(4948):1330–1333

    Article  CAS  Google Scholar 

  15. Shaikhutdinov S, Freund HJ (2013) ChemPhysChem 14(1):71–77

    Article  CAS  Google Scholar 

  16. Stacchiola D, Kaya S, Weissenrieder J, Kuhlenbeck H, Shaikhutdinov S, Freund H-J, Sierka M, Todorova TK, Sauer J (2006) Angew Chem Int Ed 45:7636–7639

    Article  CAS  Google Scholar 

  17. Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Angew Chem Int Ed 51:6005–6008

    Article  CAS  Google Scholar 

  18. Löffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Büchner C, Heyde M, Shaikhutdinov S, Freund H-J, Wlodarczyk R, Sierka M, Sauer J (2010) Phys Rev Lett 105:146104

    Article  Google Scholar 

  19. Boscoboinik JA, Yu X, Emmez E, Yang B, Shaikhutdinov S, Fischer FD, Sauer J, Freund H-J (2013) J Phys Chem C 117(26):13547–13556

    Article  CAS  Google Scholar 

  20. Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Angew Chem 124(24):6107–6111

    Article  Google Scholar 

  21. Boscoboinik JA, Yu X, Yang B, Shaikhutdinov S, Freund H-J (2013) Microporous Mesoporous Mater 165:158–162

    Article  CAS  Google Scholar 

  22. Dempsey E (1974) J Catal 33(3):497–499

    Article  CAS  Google Scholar 

  23. Schroeder KP, Sauer J (1993) J Phys Chem 97(25):6579–6581

    Article  CAS  Google Scholar 

  24. Lowenstein W (1954) Am Mineral 39:92

    Google Scholar 

  25. Lichtenstein L, Büchner C, Yang B, Shaikhutdinov S, Heyde M, Sierka M, Włodarczyk R, Sauer J, Freund H-J (2012) Angew Chem 124(2):416–420

    Article  Google Scholar 

  26. Büchner C, Lichtenstein L, Yu X, Boscoboinik JA, Yang B, Kaden WE, Heyde M, Shaikhutdinov SK, Włodarczyk R, Sierka M, Sauer J, Freund H-J (2014) Chem Eur J 20(30):9176–9183

    Article  Google Scholar 

  27. Yoshiki B, Matsumoto K (1951) J Am Ceram Soc 34:283–286

    Article  CAS  Google Scholar 

  28. Lamberti C, Zecchina A, Groppo E, Bordiga S (2010) Chem Soc Rev 39:4951–5001

    Article  CAS  Google Scholar 

  29. Bordiga S, Regli L, Cocina D, Lamberti C, Bjørgen M, Lillerud KP (2005) J. Phys. Chem. B 109:2779–2784

    Article  CAS  Google Scholar 

  30. Yang B, Kaden WE, Yu X, Boscoboinik JA, Martynova Y, Lichtenstein L, Heyde M, Sterrer M, Wlodarczyk R, Sierka M, Sauer J, Shaikhutdinov S, Freund H-J (2012) Phys Chem Chem Phys 14(32):11344–11351

    Article  CAS  Google Scholar 

  31. Makarova MA, Ojo AF, Karim K, Hunger M, Dwyer J (1994) J Phys Chem 98:3619–3623

    Article  CAS  Google Scholar 

  32. Spoto G, Bordiga S, Ricchiardi G, Scarano D, Zecchina A, Borello E (1994) J Chem Soc, Faraday Trans 90:2827

    Article  CAS  Google Scholar 

  33. Lavalley J-C, Jolly-Feaugas S, Janin A, Saussey J (1997) Mikrochim. Acta Supp 14:51–56

    CAS  Google Scholar 

  34. Umansky B, Engelhardt J, Hall WK (1991) J Catal 127:128–140

    Article  CAS  Google Scholar 

  35. Hill IM, Al Hashimi S, Bhan A (2012) J Catal 285(1):115–123

    Article  CAS  Google Scholar 

  36. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131(2):816–825

    Article  CAS  Google Scholar 

  37. Nishimura SY, Gibbons RF, Tro NJ (1998) J Phys Chem B 102(35):6831–6834

    Article  CAS  Google Scholar 

  38. Shimanouchi T (1972) Tables of Molecular Vibrational Frequencies Consolidated, vol I. National Bureau of Standards, Washington DC, pp 1–160

    Google Scholar 

  39. Roth WJ, Nachtigall P, Morris RE, Čejka J (2014) Chem Rev 114(9):4807–4837

    Article  CAS  Google Scholar 

  40. Tsapatsis M (2014) AIChE J 60(7):2374–2381

    Article  CAS  Google Scholar 

  41. Zhang X, Liu D, Xu D, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M (2012) Science 336(6089):1684–1687

    Article  CAS  Google Scholar 

  42. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catalysis Reviews 50(4):492–531

    Article  CAS  Google Scholar 

  43. Regina Oliveira de Souza T, Modesto de Oliveira Brito S, Martins Carvalho Andrade H (1999) Appl Catal A 178(1):7–15

    Article  Google Scholar 

  44. Boscoboinik JA, Yu X, Shaikhutdinov S, Freund H-J (2014) Microporous Mesoporous Mater 189:91–96

    Article  CAS  Google Scholar 

  45. Cheng K, Kang J, Huang S, You Z, Zhang Q, Ding J, Hua W, Lou Y, Deng W, Wang Y (2012) ACS Catal. 2(3):441–449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Prof. H.-J. Freund and all our coworkers cited in the references, in particular the theory group of Prof. J. Sauer, for their tremendous contribution to the work presented here. J.A.B thanks the A. von Humboldt Foundation and the Center for Functional Nanomaterials at BNL, under DOE contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anibal Boscoboinik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscoboinik, J.A., Shaikhutdinov, S. Exploring Zeolite Chemistry with the Tools of Surface Science: Challenges, Opportunities, and Limitations. Catal Lett 144, 1987–1995 (2014). https://doi.org/10.1007/s10562-014-1369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1369-3

Keywords

Navigation