Skip to main content
Log in

Pd Nanoparticles Immobilized on Orange-Like Magnetic Polymer-Supported Fe3O4/PPy Nanocomposites: A Novel and Highly Active Catalyst for Suzuki Reaction in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An orange-like catalyst of Pd nanoparticles supported by magnetic Fe3O4/polypyrrole nanocomposite is facilely prepared. It shows great activity for Suzuki coupling reactions in neat water under atmospheric pressure. This magnetic and water-soluble catalyst avoids the use of toxic solvents in traditional process of coupling reactions and can be easily recovered by mean of a convenient magnetic separation technique, demonstrating in both environmental friendliness and recyclability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tsuji J (2004) Palladium reagents and catalysts. Wiley, Chichester

    Book  Google Scholar 

  2. Baleizão C, Corma A, García H, Leyva A (2003) Chem Commun 606–607

  3. Crudden CM, Sateesh M, Lewis R (2005) J Am Chem Soc 127:10045–10050

  4. Sayah R, Glegola K, Framery E, Dufaud V (2007) Adv Synth Catal 349:373–381

  5. Shin JY, Lee BS, Jung Y, Kim SJ, Lee SG (2007) Chem Commun 5238–5240

  6. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) J Am Chem Soc 131:8262–8270

    Article  CAS  Google Scholar 

  7. Nadagouda MN, Polshettiwar V, Varma RS (2009) J Mater Chem 19:2026–2031

    Article  CAS  Google Scholar 

  8. Fihri A, Bouhrara M, Nekoueisharki B, Basset JM, Polshettiwar V (2011) Chem Soc Rev 40:5181–5203

    Article  CAS  Google Scholar 

  9. Sheldon RA (2005) Green Chem 7:267–278

    Article  CAS  Google Scholar 

  10. Andrade CKZ, Alves LM (2005) Curr Org Chem 9:195–218

    Article  CAS  Google Scholar 

  11. Ma HC, Cao W, Bao ZK, Lei ZQ (2012) Catal Sci Technol 2:2291–2296

    Article  CAS  Google Scholar 

  12. Li CJ (2005) Chem Rev 105:3095–3166

    Article  CAS  Google Scholar 

  13. Li CJ, Chen L (2006) Chem Soc Rev 35:68–82

    Article  Google Scholar 

  14. Littke AF, Fu GC (2002) Angew Chem Int Ed 41:4176–4211

    Article  CAS  Google Scholar 

  15. Walker SD, Barder TE, Martinelli JR, Buchwald SL (2004) Angew Chem Int Ed 43:1871–1876

    Article  CAS  Google Scholar 

  16. Harkal S, Rataboul F, Zapf A, Fuhrmann C, Riermeier T, Monsees A, Beller M (2004) Adv Synth Catal 346:1742–1748

    Article  CAS  Google Scholar 

  17. Dupont J, Consorti CS, Spencer J (2005) Chem Rev 105:2527–2572

    Article  CAS  Google Scholar 

  18. Christmann U, Vilar R (2005) Angew Chem Int Ed 44:366–374

    Article  CAS  Google Scholar 

  19. Anderson KW, Buchwald SL (2005) Angew Chem Int Ed 44:6173–6177

    Article  CAS  Google Scholar 

  20. Kudo N, Perseghini M, Fu GC (2006) Angew Chem Int Ed 45:1282–1284

    Article  CAS  Google Scholar 

  21. Liu N, Liu C, Jin ZL (2012) Green Chem 14:592–597

    Article  CAS  Google Scholar 

  22. Polshettiwar V, Varma RS (2010) Green Chem 12:743–754

    Article  CAS  Google Scholar 

  23. Lu AH, Salabas EL, Schappacher F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  24. Shylesh S, Wang L, Demeshko S, Thiel WR (2010) ChemCatChem. 2:1543–1547

    Article  CAS  Google Scholar 

  25. Zhu YH, Stubbs LP, Ho F, Liu RZ, Ship CP, Maguire JA, Hosmane NS (2010) ChemCatChem 2:365–374

    Article  CAS  Google Scholar 

  26. Zhu MY, Wang CJ, Meng DH, Diao GW (2013) J Mater Chem A 1:2118–2125

    Article  CAS  Google Scholar 

  27. Wittman S, Majoral JP, Grass RN, Stark WJ, Reiser O (2012) Green Proc Synth 1:275–279

    Google Scholar 

  28. Schätz A, Long TR, Grass RN, Stark WJ, Hanson PR, Reiser O (2010) Adv Funct Mater 20:4323–4328

    Article  Google Scholar 

  29. Zhu MY, Diao GW (2011) J Phys Chem C 115:24743–24749

    Article  CAS  Google Scholar 

  30. Mondal P, Banerjee S, Roy AS, Mandal TK, Islam SM (2012) J Mater Chem 22:20434–20442

    Article  CAS  Google Scholar 

  31. Polshettiwar V, Luque R, Fihri A, Zhou H, Bouhara M, Basset JM (2011) Chem Rev 111:3036–3075

    Article  CAS  Google Scholar 

  32. Zhu MY, Diao GW (2011) Nanoscale 3:2748–2767

    Article  CAS  Google Scholar 

  33. Wang YQ, Zou BF, Gao T, Wu XP, Lou SY, Zhou SM (2012) J Mater Chem 22:9034–9040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very much grateful to the financial support provided by the Shandong Taishan Scholarship and Yantai double-hundreds talents plan and Shandong Natural Science Foundation (Grant No. ZR2013BQ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zheng, Y., Sun, L. et al. Pd Nanoparticles Immobilized on Orange-Like Magnetic Polymer-Supported Fe3O4/PPy Nanocomposites: A Novel and Highly Active Catalyst for Suzuki Reaction in Water. Catal Lett 145, 1047–1053 (2015). https://doi.org/10.1007/s10562-014-1476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1476-1

Keywords

Navigation