Skip to main content
Log in

Direct Chemical Vapor Deposition Growth of Graphene Nanosheets on Supported Copper Oxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A facile chemical vapor deposition method was used to grow multi-layer graphene. A copper-based catalyst was homogeneously deposited on magnesium oxide powder surface by impregnation. The synthesis was conducted under atmospheric pressure without a dedicated reduction step prior to the reaction. The mechanism of multi-layer graphene growth was investigated by high-resolution transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. For the first time, we show that copper under its oxide form could catalyze the growth of multi-layer graphene. Such a simple method leading to produce multi-layer graphene of quite high structural quality could help to develop alternative ways for graphene production by chemical vapor deposition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  2. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) Nature 490:192

    Article  CAS  Google Scholar 

  3. Liu J, Liu Z, Barrow CJ, Yang W (2015) Anal Chim Acta 859:1

    Article  CAS  Google Scholar 

  4. Green NS, Norton ML (2015) Anal Chim Acta 853:127

    Article  CAS  Google Scholar 

  5. Gao H, Duan H (2015) Biosens Bioelectron 65:404

    Article  CAS  Google Scholar 

  6. Krishna KV, Ménard-Moyon C, Verma S, Bianco A (2013) Nanomedicine 8:1669

    Article  CAS  Google Scholar 

  7. Wang Z, Liu C-J (2015) Nano Energy 11:277

    Article  CAS  Google Scholar 

  8. Hu C, Song L, Zhang Z, Chen N, Feng Z, Qu L (2015) Energy Environ Sci 8:31

    Article  CAS  Google Scholar 

  9. Das S, Sudhagar P, Kang YS, Choi W (2014) J Mater Res 29:299

    Article  CAS  Google Scholar 

  10. Hofmann S, Braeuninger-Weimer P, Weatherup RS (2015) J Phys Chem Lett 6:2714

    Article  CAS  Google Scholar 

  11. Chen Z, Ren W, Liu B, Gao L, Pei S, Wu Z-S, Zhao J, Cheng H-M (2010) Carbon 48:3543

    Article  CAS  Google Scholar 

  12. Shan C, Tang H, Wong T, He L, Lee ST (2012) Adv Mater 24:2491

    Article  CAS  Google Scholar 

  13. Shen Y, Lua AC (2013) Sci Rep 3:3037

    Article  Google Scholar 

  14. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Science 324:1312

    Article  CAS  Google Scholar 

  15. Mattevi C, Kim H, Chhowalla M (2011) J Mater Chem 21:3324

    Article  CAS  Google Scholar 

  16. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y-W, Kim P, Hone J, Colombo L, Ruoff RS (2013) Science 342:720

    Article  CAS  Google Scholar 

  17. Zhou H, Yu WJ, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X (2013) Nat Commun 4:2096

    Google Scholar 

  18. Gottardi S, Müller K, Bignardi L, Moreno-López JC, Pham TA, Ivashenko O, Yablonskikh M, Barinov A, Björk J, Rudolf P, Stöhr M (2015) Nano Lett 15:917

    Article  CAS  Google Scholar 

  19. Zurutuza A, Marinelli C (2014) Nat Nano 9:730

    Article  CAS  Google Scholar 

  20. Ye F, Ge Z, Ding Y, Yang J (2014) Particuology 15:56

    Article  CAS  Google Scholar 

  21. Ge Z, Ye F, Ding Y (2014) ChemSusChem 7:1318

    Article  CAS  Google Scholar 

  22. Ge Z, Li Y, Li D, Sun Z, Jin Y, Liu C, Li C, Leng G, Ding Y (2014) Particuology 15:2

    Article  Google Scholar 

  23. Balandin AA (2011) Nat Mater 10:569

    Article  CAS  Google Scholar 

  24. Ge Z, Ye F, Cao H, Leng G, Qin Y, Ding Y (2014) Particuology 15:77

    Article  CAS  Google Scholar 

  25. Lin M, Ying Tan JP, Boothroyd C, Loh KP, Tok ES, Foo Y-L (2006) Nano Lett 6:449

    Article  CAS  Google Scholar 

  26. Xiong G-Y, Wang DZ, Ren ZF (2006) Carbon 44:969

    Article  CAS  Google Scholar 

  27. He M, Liu B, Chernov AI, Obraztsova ED, Kauppi I, Jiang H, Anoshkin I, Cavalca F, Hansen TW, Wagner JB, Nasibulin AG, Kauppinen EI, Linnekoski J, Niemelä M, Lehtonen J (2012) Chem Mater 24:1796

    Article  CAS  Google Scholar 

  28. Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J (2009) Chem Vap Depos 15:53.

    Article  CAS  Google Scholar 

  29. Wang G, Shen X, Yao J, Park J (2009) Carbon 47:2049

    Article  CAS  Google Scholar 

  30. Lee K, Ye J (2016) Carbon 100:441

    Article  CAS  Google Scholar 

  31. Koltsova TS, Nasibulina LI, Anoshkin IV, Mishin VV, Kauppinen EI, Tolochko OV, Nasibulin AG (2012) J Mater Sci Eng B 2:240.

    CAS  Google Scholar 

  32. Wang H, Sun X, Liu Z, Lei Z (2014) Nanoscale 6:6577

    Article  CAS  Google Scholar 

  33. Baumann SO, Schneider J, Sternig A, Thomele D, Stankic S, Berger T, Grönbeck H, Diwald O (2015) Langmuir 31:2770

    Article  CAS  Google Scholar 

  34. Monthioux M, Noé L, Kobylko M, Wang Y, Cazares-Huerta TC, Pénicaud A (2017) Carbon 115:128

    Article  CAS  Google Scholar 

  35. Kalbac M, Frank O, Kavan L (2012) Carbon 50:3682

    Article  CAS  Google Scholar 

  36. Chen S, Brown L, Levendorf M, Cai W, Ju S-Y, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS (2011) ACS Nano 5:1321

    Article  CAS  Google Scholar 

  37. Shi L, Wang R, Zhai H, Liu Y, Gao L, Sun J (2015) PCCP 17:4231

    Article  CAS  Google Scholar 

  38. Fleisch TH, Mains GJ (1982) Appl Surf Sci 10:51

    Article  CAS  Google Scholar 

  39. Marella RK, Koppadi KS, Jyothi Y, Rama Rao KS, Burri DR (2013) New J Chem 37:3229

    Article  CAS  Google Scholar 

  40. El-Molla SA (2006) Appl Catal A 298:103

    Article  CAS  Google Scholar 

  41. Nagaraja BM, Padmasri AH, Raju BD, Rama Rao KS (2011) Int J Hydrogen Energy 36:3417

    Article  CAS  Google Scholar 

  42. Artizzu P, Garbowski E, Primet M, Brulle Y, Saint-Just J (1999) Catal Today 47:83

    Article  CAS  Google Scholar 

  43. Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Pérez M (2002) J Am Chem Soc 124:346

    Article  CAS  Google Scholar 

  44. Yuan L, Van Der Geest AG, Zhu W, Yin Q, Li L, Kolmogorov AN, Zhou G (2014) RSC Adv 4:30259

    Article  CAS  Google Scholar 

  45. Furstenau RP, McDougall G, Langell MA (1985) Surf Sci 150:55

    Article  CAS  Google Scholar 

  46. Ressler T, Jentoft RE, Wienold J, Günter MM, Timpe O (2000) J Phys Chem B 104:6360

    Article  CAS  Google Scholar 

  47. Lin J-H, Chen C-S, Zeng Z-Y, Chang C-W, Chen H-W (2012) Nanoscale 4:4757

    Article  CAS  Google Scholar 

  48. Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y (2006) Nano Lett 6:2987

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Garoux for the XRF measurements. The authors gratefully acknowledge the financial support provided by the IReC Grant (1002/PJKIMIA/910404) and Science Fund Grant (Project No. 03-01-05-SF0659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Vigolo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayou, S., Vigolo, B., Ghanbaja, J. et al. Direct Chemical Vapor Deposition Growth of Graphene Nanosheets on Supported Copper Oxide. Catal Lett 147, 1988–1997 (2017). https://doi.org/10.1007/s10562-017-2125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2125-2

Keywords

Navigation