Skip to main content
Log in

A Facile Synthesis of TiO2–CdS Heterostructures With Enhanced Photocatalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The development of photocatalysts for degradation of toxic pollutants is an increasingly important research area because of environmental pollution. In this paper, in order to exploit efficient photosensitizers with appropriate electronic states to enhance the transfer of electrons, TiO2–CdS heterostructures were synthesized by a facile, hydrothermal method. The samples were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence techniques. The degradation of the cationic dye rhodamine B (RhB) in water and perylene in organic solution by TiO2–CdS hetrostructures were investigated in detail. The results showed that the heterostructure largely enhanced the photosensitized degradation of RhB and perylene. They were supposed to arise mainly from the effective contact between the CdS and TiO2 nanoparticles. Such a heterostructure photocatalyst has much significance in the degradation of toxic and persistence organic pollutants contaminants in the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z, Tang J (2014) Highly efficient photocatalytic h 2 evolution from water using visible light and structure-controlled graphitic carbon nitride †. Angew Chem Int Ed 53(35):9240–9245

    Article  CAS  Google Scholar 

  2. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43(45):6042–6108

    Article  CAS  Google Scholar 

  3. Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol 48(15):8334–8348

    Article  CAS  Google Scholar 

  4. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5(3):182–189. doi:10.1016/S2221-1691(15)30003-4

    Article  Google Scholar 

  5. Liao Y, Zhang H, Zhong Z, Jia L, Bai F, Li J, Zhong P, Chen H, Zhang J (2013) Enhanced visible-photocatalytic activity of anodic TiO2 nanotubes film via decoration with CuInSe2 nanocrystals. Acs Appl Mater Interfaces 5(21):11022–11028

    Article  CAS  Google Scholar 

  6. Dong H, Zeng G, Lin T, Fan C, Chang Z, He X, Yan H (2015) An overview on limitations of TiO 2 -based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  Google Scholar 

  7. Georgaki I, Vasilaki E, Katsarakis N (2014) A study on the degradation of carbamazepine and ibuprofen by TiO2 & ZnO photocatalysis upon UV/visible-light irradiation. Am J Anal Chem 05(8):518–534

    Article  CAS  Google Scholar 

  8. Wilhelm RA, El-Said AS, Krok F, Heller R, Gruber E, Aumayr F, Facsko S (2015) Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Prog Surf Sci 90(3):377–395

    Article  CAS  Google Scholar 

  9. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. Acs Nano 8(2):1102–1120

    Article  CAS  Google Scholar 

  10. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C 7(4):127–144

    Article  CAS  Google Scholar 

  11. Shkrob IA, Sauer MC Jr (2004) Hole scavenging and photo-stimulated recombination of electron–hole pairs in aqueous TiO2 nanoparticles. J Phys Chem B 108(33):12497–12511

    Article  CAS  Google Scholar 

  12. Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43(20):6920–6937

    Article  CAS  Google Scholar 

  13. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218

    Article  CAS  Google Scholar 

  14. Sun H, Wang S (2014) Research advances in the synthesis of nanocarbon-based photocatalysts and their applications for photocatalytic conversion of carbon dioxide to hydrocarbon fuels. Energy Fuels 28(1):22–36

    Article  CAS  Google Scholar 

  15. Kowalska E, Yoshiiri K, Wei Z, Zheng S, Kastl E, Remita H, Ohtani B, Rau S (2015) Hybrid photocatalysts composed of titania modified with plasmonic nanoparticles and ruthenium complexes for decomposition of organic compounds. Appl Catal B Environ 178:133–143

    Article  Google Scholar 

  16. Ao Y, Xu J, Fu D, Yuan C (2009) Synthesis of C, N, S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity. Microporous Mesoporous Mater 122(1–3):1–6

    Article  CAS  Google Scholar 

  17. Reddy KM, Baruwati B, Jayalakshmi M, Rao MM, Manorama SV (2005) S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study. J Solid State Chem 178(11):3352–3358

    Article  CAS  Google Scholar 

  18. Zhao H, Tian F, Wang R, Chen R (2014) A review on bismuth-related nanomaterials for photocatalysis. Rev Adv Sci Eng 3(1):3–27

    Article  Google Scholar 

  19. Park H, Gutierrez M, Wu X, Kim W, Zhu XY (2013) Optical probe of charge separation at organic/inorganic semiconductor interfaces. J Phys Chem C 117(21):10974–10979

    Article  CAS  Google Scholar 

  20. Kalanur SS, Hwang YJ, Joo OS (2013) Construction of efficient CdS–TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes. J Colloid Interface Sci 402:94–99. doi:10.1016/j.jcis.2013.03.049

    Article  CAS  Google Scholar 

  21. Zhu W, Liu X, Liu H, Tong D, Yang J, Peng J (2010) Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J Am Chem Soc 132(36):12619–12626. doi:10.1021/ja1025112

    Article  CAS  Google Scholar 

  22. Mora-Sero I, Gimenez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857. doi:10.1021/ar900134d

    Article  CAS  Google Scholar 

  23. Ruhle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. ChemPhysChem 11(11):2290–2304. doi:10.1002/cphc.201000069

    Article  Google Scholar 

  24. Eiden-Assmann S, Widoniak J, Maret G (2004) Synthesis and characterization of porous and nonporous monodisperse colloidal Tio2 particles. Chem Mater 16(1):6–11. doi:10.1021/cm0348949

    Article  CAS  Google Scholar 

  25. Fan W, Zhang Q, Wang Y (2012) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15(8):2632–2649

    Article  Google Scholar 

  26. Song G, Xin F, Chen J, Yin X (2014) Photocatalytic reduction of CO2 in cyclohexanol on CdS–TiO2 heterostructured photocatalyst. Appl Catal A 473:90–95. doi:10.1016/j.apcata.2013.12.035

    Article  CAS  Google Scholar 

  27. Lavand AB, Malghe YS, Singh SH (2015) Synthesis, characterization, and investigation of visible light photocatalytic activity of C doped TiO2/Cds core-shell nanocomposite. Indian J Mater Sci 2015(2015):1–9

    Google Scholar 

  28. Zhu L, Yin Y, Wang C-F, Chen S (2013) Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J Mater Chem C 1(32):4925–4932. doi:10.1039/c3tc30701h

    Article  CAS  Google Scholar 

  29. Watanabe T, Takizawa T, Honda K (1977) Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J Phys Chem 81(19):1845–1851. doi:10.1021/j100534a012

    Article  CAS  Google Scholar 

  30. Moussawi RN, Patra D (2016) Nanoparticle self-assembled grain like curcumin conjugated ZnO: curcumin conjugation enhances removal of perylene, fluoranthene, and chrysene by ZnO. Sci Rep 6:24565. doi:10.1038/srep24565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21505033, 21571093 and 111, project), the Program for Innovative Research Team in Science and Technology in University of Henan Province (18IRTSTHN002), and the PhD Start-up Fund of Henan Normal University, China (qd15112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, Z., Wang, K. et al. A Facile Synthesis of TiO2–CdS Heterostructures With Enhanced Photocatalytic Activity. Catal Lett 147, 2581–2591 (2017). https://doi.org/10.1007/s10562-017-2151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2151-0

Keywords

Navigation