Skip to main content
Log in

Development of Amine Functionalized Wrinkled Silica Nanospheres and Their Application as Efficient and Recyclable Solid Base Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Amine functionalized wrinkled silica nanospheres (WSiO2–NH2) were successfully synthesized by using a simple biphase sol–gel approach. The prepared silica nanospheres were characterized by using various techniques, such as TEM, FE-SEM, EDX, TGA, X-ray diffraction and FT-IR spectroscopy. The prepared amine functionalized wrinkled silica nanospheres have been, for the first time, explored as an efficient and recyclable solid base catalyst for Knoevenagel condensation. The catalytic efficiency of the synthesized nanospheres was analysed using different aromatic aldehydes and active methylene compounds as reactants under very mild reaction conditions. The exceptional catalytic activity of the WSiO2–NH2 nanospheres is because of the easy accessibility of amine sites to the reactant molecules. This is because WSiO2–NH2 nanospheres have wrinkled structure which provides high surface area and larger pore size. This facilitates the penetration and proper interaction of the reactants molecules with the basic amine groups on the WSiO2–NH2 nanospheres.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu P, Yu H, Li X (2011) Anal Chem 83(9):3448–3454

    Article  CAS  Google Scholar 

  2. dos Santos MP, Rahim A, Fattori N, Kubota LT, Gushikem Y (2012) Sens Actuators B 171:712–718

    Article  Google Scholar 

  3. Bolivar JM, Schelch S, Mayr T, Nidetzky B (2015) ACS Catal 5(10):5984–5993

    Article  CAS  Google Scholar 

  4. Sinha A, Basiruddin S, Chakraborty A, Jana NR (2015) ACS Appl Mater Interfaces 7(2):1340–1347

    Article  CAS  Google Scholar 

  5. Sheng W, Wei W, Li J, Qi X, Zuo G, Chen Q, Pan X, Dong W (2016) Appl Surf Sci 387:1116–1124

    Article  CAS  Google Scholar 

  6. Popat A, Liu J, Hu Q, Kennedy M, Peters B, Lu GQM, Qiao SZ (2012) Nanoscale 4(3):970–975

    Article  CAS  Google Scholar 

  7. Biradar AV, Patil VS, Chandra P, Doke DS, Asefa T (2015) Chem Commun 51(40):8496–8499

    Article  CAS  Google Scholar 

  8. Shen D, Chen L, Yang J, Zhang R, Wei Y, Li X, Li W, Sun Z, Zhu H, Abdullah AM (2015) ACS Appl Mater Interfaces 7(31):17450–17459

    Article  CAS  Google Scholar 

  9. Dewaele A, Van Berlo B, Dijkmans J, Jacobs PA, Sels BF (2016) Catal Sci Technol 6(8):2580–2597

    Article  CAS  Google Scholar 

  10. Irum M, Zaheer M, Friedrich M, Kempe R (2016) RSC Adv 6(13):10438–10441

    Article  CAS  Google Scholar 

  11. Munz D, Wang D, Moyer MM, Webster-Gardiner MS, Kunal P, Watts D, Trewyn BG, Vedernikov AN, Gunnoe TB (2016) ACS Catal 6(7):4584–4593

    Article  CAS  Google Scholar 

  12. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin V.S.-Y. (2003) J Am Chem Soc 125(15):4451–4459

    Article  CAS  Google Scholar 

  13. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T (2015) Nanomedicine 11(2):313–327

    Article  CAS  Google Scholar 

  14. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) J Am Chem Soc 121(41):9611–9614

    Article  CAS  Google Scholar 

  15. Davis ME (2002) Nature 417(6891):813

    Article  CAS  Google Scholar 

  16. Hartmann M (2005) Chem Mater 17(18):4577–4593

    Article  CAS  Google Scholar 

  17. Taguchi A, Schüth F (2005) Microporous Mesoporous Mater 77(1):1–45

    Article  CAS  Google Scholar 

  18. Wang S (2009) Microporous Mesoporous Mater 117(1):1–9

    CAS  Google Scholar 

  19. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42(8):3371–3393

    Article  CAS  Google Scholar 

  20. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) J Am Chem Soc 131(23):8262–8270

    Article  CAS  Google Scholar 

  21. Zhuang Z, Giles SA, Zheng J, Jenness GR, Caratzoulas S, Vlachos DG, Yan Y (2016) Nat Commun 7

  22. Wu S-H, Mou C-Y, Lin H-P (2013) Chem Soc Rev 42(9):3862–3875

    Article  CAS  Google Scholar 

  23. Parida KM, Rath D (2009) J Mol Catal A: Chem 310(1):93–100

    CAS  Google Scholar 

  24. Modak A, Mondal J, Aswal VK, Bhaumik A (2010) J Mater Chem 20(37):8099–8106

    Article  CAS  Google Scholar 

  25. Das S, Asefa T (2011) ACS Catal 1(5):502–510

    Article  CAS  Google Scholar 

  26. Koh K, Seo J-E, Lee J, Goswami A, Yoon C, Asefa T (2014) J Mater Chem A 2(48):20444–20449

    Article  CAS  Google Scholar 

  27. Suzuki TM, Nakamura T, Fukumoto K, Yamamoto M, Akimoto Y, Yano K (2008) J Mol Catal A 280(1):224–232

    Article  CAS  Google Scholar 

  28. Parida K, Mallick S, Sahoo P, Rana S (2010) Appl Catal A 381(1):226–232

    Article  CAS  Google Scholar 

  29. Vafaeezadeh M, Dizicheh ZB, Hashemi MM (2013) Catal Commun 41:96–100

    Article  CAS  Google Scholar 

  30. Varadwaj G.B.B., Rana S, Parida K (2013) Dalton Trans 42(14):5122–5129

    Article  CAS  Google Scholar 

  31. Thangaraj B, Jayaraj C, Srinivasan R, Ayyamperumal S (2015) J Mol Catal A 409:11–18

    Article  CAS  Google Scholar 

  32. Sun Z, Cui G, Li H, Tian Y, Yan S (2016) Colloids Surf A 489:142–153

    Article  CAS  Google Scholar 

  33. Waddell TG, Leyden DE, DeBello MT (1981) J Am Chem Soc 103(18):5303–5307

    Article  CAS  Google Scholar 

  34. Yoshitake H (2005) New J Chem 29(9):1107–1117

    Article  CAS  Google Scholar 

  35. Du X, Shi B, Liang J, Bi J, Dai S, Qiao SZ (2013) Adv Mater 25(41):5981–5985

    Article  CAS  Google Scholar 

  36. Rand L, Swisher JV, Cronin CJ (1962) J Org Chem 27(10):3505–3507

    Article  CAS  Google Scholar 

  37. Lai SM, Martin-Aranda R, Yeung KL (2003) Chem Commun (2):218–219. https://doi.org/10.1039/B209297B

  38. Zahouily M, Salah M, Bahlaouane B, Rayadh A, Houmam A, Hamed EA, Sebti S (2004) Tetrahedron 60(7):1631–1635

    Article  CAS  Google Scholar 

  39. Elhamifar D, Kazempoor S (2016) J Mol Catal A 415:74–81

    Article  CAS  Google Scholar 

  40. Kumar A, Kumar S, Saxena A, De A, Mozumdar S (2008) Catal Lett 122(1–2):98–105

    Article  CAS  Google Scholar 

  41. Kumar A, Saxena A, De A, Mozumdar S (2008) Catal Commun 9(5):778–784

    Article  CAS  Google Scholar 

  42. Kumar A, Dewan M, Saxena A, De A, Mozumdar S (2010) Catal Commun 11(8):679–683

    Article  CAS  Google Scholar 

  43. Kumar A, Saxena A, Dewan M, De A, Mozumdar S (2011) Tetrahedron Lett 52(38):4835–4839

    Article  CAS  Google Scholar 

  44. Kumar A, Aerry S, Saxena A, Mozumdar S (2012) Green Chem 14(5):1298–1301

    Article  CAS  Google Scholar 

  45. Kumar A, Saxena A, De A, Shankar R, Mozumdar S (2013) RSC Adv 3(15):5015–5021

    Article  CAS  Google Scholar 

  46. Garkoti C, Shabir J, Mozumdar S (2017) New J Chem 41:9291–9298

    Article  CAS  Google Scholar 

  47. Shabir J, Rani S, Garkoti C, Mozumdar S (2017) Mater Lett 209:207–211

    Article  CAS  Google Scholar 

  48. Zhao H, Yu N, Ding Y, Tan R, Liu C, Yin D, Qiu H, Yin D (2010) Microporous Mesoporous Mater 136(1):10–17

    Article  CAS  Google Scholar 

  49. Mondal J, Modak A, Bhaumik A (2011) J Mol Catal A 335(1):236–241

    Article  CAS  Google Scholar 

  50. Bouhrara M, Ranga C, Fihri A, Shaikh RR, Sarawade P, Emwas A-H, Hedhili MN, Polshettiwar V (2013) ACS Sustain Chem Eng 1(9):1192–1199

    Article  CAS  Google Scholar 

  51. Elhamifar D, Kazempoor S, Karimi B (2016) Catal Sci Technol 6(12):4318–4326

    Article  CAS  Google Scholar 

  52. Rajabi F, Fayyaz F, Luque R (2017) Microporous Mesoporous Mater 253:64–70

    Article  CAS  Google Scholar 

  53. Sakthivel B, Dhakshinamoorthy A (2017) J Colloid Interface Sci 485:75–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JS, CG and SM thank USIC, University of Delhi, New Delhi, India for analytical support and JS and CG thank UGC India for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subho Mozumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabir, J., Garkoti, C., Surabhi et al. Development of Amine Functionalized Wrinkled Silica Nanospheres and Their Application as Efficient and Recyclable Solid Base Catalyst. Catal Lett 148, 194–204 (2018). https://doi.org/10.1007/s10562-017-2235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2235-x

Keywords

Navigation