Skip to main content
Log in

Catalytic Active Site for NO Decomposition Elucidated by Surface Science and Real Catalyst

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Comprehensive studies combining surface science and real catalyst were performed to get further insight into catalytic active site and reaction mechanism for NO decomposition over supported palladium and cobalt oxide-based catalysts. On palladium single-crystal model catalysts, adsorption, dissociation and desorption behavior of NO was found to be closely related to the surface structures, the stepped surface palladium being active for dissociation of NO. In accordance with this result, the activity of powder Pd/Al2O3 catalysts for NO decomposition was directly related to the number of step sites exposed on the surface, suggesting that the step sites act as the catalytic active site for NO decomposition on Pd/Al2O3. NO decomposition over cobalt oxide was found to be significantly promoted by addition of alkali metals. Surface science study and catalyst characterization led to the same conclusion that the interface between the alkali metal and Co3O4 serves as the catalytic active site. From the results of in situ Fourier transform infrared (FT-IR) spectroscopy and isotopic transient kinetic analysis, a reaction mechanism was proposed in which the reaction is initiated by NO adsorption onto alkali metals to form NO 2 species and then NO 2 species react with the adsorbed NO species to form N2 over the interface between the alkali metal and Co3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto H. Hamada (1991) Catal. Today 10 57 Occurrence Handle10.1016/0920-5861(91)80074-J Occurrence Handle1:CAS:528:DyaK3MXmtFektLs%3D

    Article  CAS  Google Scholar 

  2. F. Garin (2001) Cappl. Appl. A 222 183

    Google Scholar 

  3. G.A. Somorjai (1994) Introduction to Surface Chemistry and Catalysis Wiley-Interscience New York

    Google Scholar 

  4. I. Nakamura T. Fujitani H. Hamada (2002) Surf.Sci. 514 409 Occurrence Handle10.1016/S0039-6028(02)01634-5 Occurrence Handle1:CAS:528:DC%2BD38Xls12guro%3D

    Article  CAS  Google Scholar 

  5. M. Haneda, Y. Kintaichi, I. Nakamura, T. Fujitani and H. Hamada, Chem. Commun (2002) 2816.

  6. M. Haneda Y. Kintaichi I. Nakamura T. Fujitani H. Hamada (2003) J. Catal. 218 405 Occurrence Handle10.1016/S0021-9517(03)00158-1 Occurrence Handle1:CAS:528:DC%2BD3sXlsVWku7s%3D

    Article  CAS  Google Scholar 

  7. M. Haneda Y. Kintaichi N. Bion H. Hamada (2003) Appl. Catal. B46 473

    Google Scholar 

  8. M. Haneda Y. Kintaichi H. Hamada (2005) Appl. Catal. B 55 169

    Google Scholar 

  9. I. Nakamura, M. Haneda, H. Hamada and T. Fujitani, J. Electron Spectrosc. Rel. Phenom., in press

  10. J.W. Hightower and D.A. VanLeirsburg, The Catalytic Chemistry of Nitrogen Oxides, in: R.M. Klimisch and J.G. Larson (eds.), (Plenum Press, London, 1975 ) pp. 63.

  11. C. Crisafulli R. Maggiore S. Scirè L. Solarino S. Galvagno (1990) J. Mol. Catal. 63 55 Occurrence Handle1:CAS:528:DyaK3MXmtFertQ%3D%3D

    CAS  Google Scholar 

  12. M. Boudart (1997) J. Mol. Catal. A 120 271

    Google Scholar 

  13. H. Orita I. Nakamura T. Fujitani (2004) Surf. Sci. 571 102 Occurrence Handle1:CAS:528:DC%2BD2cXovVSku7g%3D

    CAS  Google Scholar 

  14. W. A. Brown D. A. King (2000) J. Phys. Chem. B 104 2578

    Google Scholar 

  15. R.D. Ramsier Q. Gao H. Neergaard Waltenburg J.T. Yates SuffixJr. (1994) J. Chem. Phys. 100 6837 Occurrence Handle10.1063/1.467043 Occurrence Handle1:CAS:528:DyaK2cXktFykurs%3D

    Article  CAS  Google Scholar 

  16. R.D. Ramsier Q. Gao H. Neergaard Waltenburg K.-W. Lee O.W. Nooij L. Lefferts J.T. Yates SuffixJr. (1994) Surf. Sci. 320 209 Occurrence Handle10.1016/0039-6028(94)90310-7 Occurrence Handle1:CAS:528:DyaK2MXisFektbg%3D

    Article  CAS  Google Scholar 

  17. E.R.S. Winter (1971) J. Catal. 22 158 Occurrence Handle10.1016/0021-9517(71)90182-5 Occurrence Handle1:CAS:528:DyaE3MXksFektLg%3D

    Article  CAS  Google Scholar 

  18. M. Shelef (1975) Catal. Rev. Sci. Eng. 11 1 Occurrence Handle1:CAS:528:DyaE2MXhtVamsL8%3D

    CAS  Google Scholar 

  19. P.W. Park J.K. Kil H.H. Kung M.C. Kung (1998) Catal. Today 42 51 Occurrence Handle10.1016/S0920-5861(98)00076-5 Occurrence Handle1:CAS:528:DyaK1cXjtlOnt7c%3D

    Article  CAS  Google Scholar 

  20. G. Tsuboi M. Haneda Y. Nagao Y. Kintaichi H. Hamada (2005) J. Jpn. Petrol. Inst. 48 53 Occurrence Handle10.1627/jpi.48.53 Occurrence Handle1:CAS:528:DC%2BD2MXnslCntQ%3D%3D

    Article  CAS  Google Scholar 

  21. Handbook of X-Ray Photoelectron Spectroscopy, Ed. by C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, Physical Electronics Division, Perkin-Elmer Corporation

  22. J.W. Gadzuk (1967) Surf. Sci. 6 133 Occurrence Handle1:CAS:528:DyaF2sXnvF2iug%3D%3D

    CAS  Google Scholar 

  23. K. Aika H. Hori A. Ozaki (1972) J. Catal. 27 424 Occurrence Handle10.1016/0021-9517(72)90179-0 Occurrence Handle1:CAS:528:DyaE3sXotlOk

    Article  CAS  Google Scholar 

  24. H.P. Bonzel G. Brodén H.J. Krebs (1983) Appl. Surf. Sci. 16 373 Occurrence Handle1:CAS:528:DyaL3sXlsVarsb0%3D

    CAS  Google Scholar 

  25. I. Nakamura, T. Fujitani, unpublished data

  26. K.I. Hadjiivanov (2000) Catl. Rev. Sci. Eng. 42 71 Occurrence Handle1:CAS:528:DC%2BD3cXjsFyqtL8%3D

    CAS  Google Scholar 

  27. M.A. Vannice A.B. Walters X. Zhang (1996) J. Catal. 159 119 Occurrence Handle10.1006/jcat.1996.0071 Occurrence Handle1:CAS:528:DyaK28Xitlyltrc%3D

    Article  CAS  Google Scholar 

  28. S. Xie M.P. Rosynek J.H. Lunsford (1999) J. Catal. 188 24 Occurrence Handle1:CAS:528:DyaK1MXntVCnt7Y%3D

    CAS  Google Scholar 

  29. T. Ishihara M. Ando K. Sada K. Takiishi K. Yamada H. Nishiguchi Y. Takita (2003) J. Catal. 220 104 Occurrence Handle10.1016/S0021-9517(03)00265-3 Occurrence Handle1:CAS:528:DC%2BD3sXot1Oitro%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Haneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haneda, M., Nakamura, I., Fujitani, T. et al. Catalytic Active Site for NO Decomposition Elucidated by Surface Science and Real Catalyst. Catal Surv Asia 9, 207–215 (2005). https://doi.org/10.1007/s10563-005-9156-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-005-9156-1

Keywords

Navigation