Skip to main content

Advertisement

Log in

Fischer–Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Impregnated and co-precipitated, promoted and unpromoted, bulk and supported iron catalysts were prepared, characterized, and subjected to hydrogenation of CO2 at various pressures (1–2 MPa) and temperatures (573–673 K). Potassium, as an important promoter, enhanced the CO2 uptake and selectivity towards olefins and long-chain hydrocarbons. Al2O3, when added as a structural promoter during co-precipitation, increased CO2 conversion as well as selectivity to C2+ hydrocarbons. Among V, Cr, Mn and Zn promoters, Zn offered the highest selectivity to C2–C4 alkenes. The different episodes involved in the transformation of the catalyst before it reached steady-state were identified, on the co-precipitated catalyst. Using a biomass derived syngas (CO/CO2/H2), CO alone took part in hydrogenation. When enriched with H2, CO2 was also converted to hydrocarbons. The deactivation of impregnated Fe–K/Al2O3 catalyst was found to be due to carbon deposition, whereas that for the precipitated catalyst was due to increase in crystallinity of iron species. The suitability of SiO2, TiO2, Al2O3, HY and ion exchanged NaY as supports was examined for obtaining high activity and selectivity towards light olefins and C2+ hydrocarbons and found Al2O3 to be the best support. A comparative study with Co catalysts revealed the advantages of Fe catalysts for hydrocarbon production by F–T synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edwards JH (1995) Catal Today 23:59

    Article  CAS  Google Scholar 

  2. Fujimoto K, Shikada T (1987) Appl Catal 31:13

    Article  CAS  Google Scholar 

  3. Lee JF, Chern WS, Lee MD, Dong TY (1992) Can J Chem Eng 70:511

    Article  CAS  Google Scholar 

  4. Fujiwara M, Kieffer R, Ando H, Souma Y (1995) Appl Catal A 121:113

    CAS  Google Scholar 

  5. Fiato RA, Iglesia E, Rice GW, Soled SL (1998) Stud Surf Sci Catal 107:339

    Article  Google Scholar 

  6. Omae I (2006) Catal Today 115:33

    Article  CAS  Google Scholar 

  7. Newsome DS (1980) Catal Rev Sci Eng 21:275

    Article  CAS  Google Scholar 

  8. Dry ME (1996) Appl Catal A 138:319

    Article  CAS  Google Scholar 

  9. Jin Y, Datye A (2000) J Catal 196:8

    Article  CAS  Google Scholar 

  10. Miller D, Moskovits M (1989) J Am Chem Soc 111:9250

    Article  CAS  Google Scholar 

  11. US Patent 3,130,009, 1970

  12. Yan SR, Jun KW, Hong JS, Choi MJ, Lee KW (2000) Appl Catal A 194–195:63

    Google Scholar 

  13. Choi PH, Jun KW, Lee SJ, Choi MJ, Lee KW (1996) Catal Lett 40:115

    Article  CAS  Google Scholar 

  14. Jun KW, Lee SJ, Kim H, Choi MJ, Lee KW (1998) Stud Surf Sci Catal 114:345

    Article  Google Scholar 

  15. Nam SS, Lee SJ, Kim H, Jun KW, Choi MJ, Lee KW (1997) Energy Convers Manage 38(Suppl):S397

    Article  CAS  Google Scholar 

  16. Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Topics Catal 26:41

    Article  CAS  Google Scholar 

  17. Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch and related syntheses. John Wiley & Sons, New York

    Google Scholar 

  18. Schulz H, Claeys M (1999) Appl Catal A 186:71

    Article  CAS  Google Scholar 

  19. Satterfield CN, Hanlon RT, Tung SE, Zou Z, Papaefthymiou GC (1986) Ind Eng Chem Prod Res Dev 25:407

    Article  CAS  Google Scholar 

  20. Schulz H, Riedel T, Schaub G (2005) Topics Catal 32:117

    Article  CAS  Google Scholar 

  21. Raupp GB, Delgass WN (1979) J Catal 58:361

    Article  CAS  Google Scholar 

  22. Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW (1999) Appl Catal A 186:201

    Article  CAS  Google Scholar 

  23. Falconer JL, Zagli AE (1980) J Catal 62:280

    Article  CAS  Google Scholar 

  24. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  25. Bonzel HP, Krebs HJ (1982) Surf Sci 117:639

    Article  CAS  Google Scholar 

  26. Gao X, Shen J, Hsia Y, Chen Y (1993) J Chem Soc, Faraday Trans 89:1079

    Article  CAS  Google Scholar 

  27. Lee MD, Lee JF, Chang CS (1989) Bull Chem Soc Jpn 62:2756

    Article  CAS  Google Scholar 

  28. Anderson RB (1984) The Fischer–Tropsch synthesis. Academic Press, London

    Google Scholar 

  29. Jun KW, Roh HS, Kim KS, Ryu JS, Lee KW (2004) Appl Catal A 259:221

    Article  CAS  Google Scholar 

  30. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 1. Springer-Verlag, Berlin, p 159

    Google Scholar 

  31. Hwang JS, Jun KW, Lee KW (2001) Appl Catal A 208:217

    Article  CAS  Google Scholar 

  32. Shultz JF, Hall WK, Dubs TA, Anderson RB (1956) J Am Chem Soc 78:282

    Article  CAS  Google Scholar 

  33. Niemantsverdriet J, van der Kraan A, van Dijk W, van der Baan H (1980) J Phys Chem 84:3363

    Article  CAS  Google Scholar 

  34. Hong JS, Hwang JS, Jun KW, Sur JC, Lee KW (2001) Appl Catal A 218:53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Korea Ministry of Commerce, Industry and Energy (MOCIE) through “Project of next-generation novel technology development“ of ITEP. P.S. Sai Prasad thanks Korea Federation of Science & Technology (KOFST) for the award of the visiting research fellowship under Brain Pool program and the Director, IICT, Hyderabad, for sanctioning the sabbatical leave. K.W. Jun thanks all the co-authors of his papers cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Won Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sai Prasad, P.S., Bae, J.W., Jun, KW. et al. Fischer–Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts. Catal Surv Asia 12, 170–183 (2008). https://doi.org/10.1007/s10563-008-9049-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-008-9049-1

Keywords

Navigation