Skip to main content
Log in

Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Dried and never-dried chemical pulps were subjected to strong sulfuric acid hydrolysis and the dimensions of the resulting cellulose nanocrystals (CNCs) were characterized by AFM image analysis. Although the average length of CNCs was fairly similar in all samples (55–65 nm), the length distribution histograms revealed that a higher number of longer crystals and a lower number of shorter crystals were present in the CNC suspensions prepared from never-dried pulps. The distinction was hypothetically ascribed to tensions building in individual cellulose microfibrils upon drying, resulting in irreversible supramolecular changes in the amorphous regions. The amorphous regions shaped by tensions were deemed as more susceptible to acid hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/bm700624p

    Article  CAS  Google Scholar 

  • Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson L-S et al (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155. doi:10.1021/bm070304e

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. doi:10.1016/S0927-7757(98)00404-X

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  • Barzyk D, Page DH, Ragauskas A (1997) Acidic group topochemistry and fiber-to-fiber specific bond strength. J Pulp Pap Sci 23:J59–J61

    CAS  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335. doi:10.1021/ie50554a046

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  • Chen W, Lickfield G, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer (Guildf) 45:1063–1071. doi:10.1016/j.polymer.2003.11.020

    Article  CAS  Google Scholar 

  • da Silva Perez D, van Heiningen ARP (2002) Determination of cellulose degree of polymerization in chemical pulps by viscosimetry. In: Seventh European workshop on lignocellulosics and pulp: proceedings. Åbo Akademi, Turku, pp 393–396

  • Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893. doi:10.1016/j.carres.2004.10.005

    Article  CAS  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. doi:10.1002/marc.200300268

    Article  Google Scholar 

  • Edgar CD, Gray DG (2003) Smooth cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306. doi:10.1023/A:1027333928715

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.1021/bm700769p

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438. doi:10.1021/bm040068x

    Article  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. doi:10.1126/science.1121416

    Article  CAS  Google Scholar 

  • Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. doi:10.1007/s00226-003-0216-2

    Article  CAS  Google Scholar 

  • Fink HP, Hofmann D, Purz HJ (1990) Zur Fibrillarstruktur nativer cellulose. Acta Polym 41:131–137. doi:10.1002/actp. 1990.010410213

    Article  CAS  Google Scholar 

  • Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7:1831–1835. doi:10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-S

    Article  CAS  Google Scholar 

  • Hernadi A, Dömötör J (1981) Water take-up and swelling of cellulose fibers after thermal treatment. Cellulose Chem Technol 15:63–75

    CAS  Google Scholar 

  • Higgins HG, McKenzie AW (1963) The structure and properties of paper XIV. Effects of drying cellulose fibers and the problem of maintaining pulp strength. Appita 16:145–164

    CAS  Google Scholar 

  • Hubbe MA, Vendetti R, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2:739–788

    CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d

    Article  CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer (Guildf) 42:3309–3314. doi:10.1016/S0032-3861(00)00774-6

    Article  CAS  Google Scholar 

  • Hult E-L, Liitiä T, Maunu SL, Hortling B, Iversen T (2002) A CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibers. Carbohydr Polym 49:231–234. doi:10.1016/S0144-8617(01)00309-5

    Article  CAS  Google Scholar 

  • Jayme G (1944) Mikro-Quellungsmessungen an Zellstoffen. Papier-Fabrikant/Wochenblatt für Papierfabrikation 42:187–194

    Google Scholar 

  • Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206. doi:10.1021/ma060261e

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kontturi E, Johansson L-S, Kontturi KS, Ahonen P, Thüne PC, Laine J (2007) Cellulose nanocrystal submonolayers by spin coating. Langmuir 23:9674–9680. doi:10.1021/la701262x

    Article  CAS  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force microscopy and electron microscopy. Biomacromolecules 6:3160. doi:10.1021/bm050479t

    Article  CAS  Google Scholar 

  • Laine J, Lindström T, Bremberg C, Glad-Nordmark G (2003) Studies on topochemical modification of cellulosic fibres. Part 4: toposelectivity of carboxymethylation and its effects on the swelling of fibres. Nord Pulp Pap Res J 18:316–324. doi:10.3183/NPPRJ-2003-18-03-p316-324

    Article  CAS  Google Scholar 

  • Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking: transactions of the 10th fundamental research symposium held at Oxford, vol 2. Pira International, Leatherhead, pp 1235–1260 September 1993

  • Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316. doi:10.1023/A:1027302526861

    Article  Google Scholar 

  • Maloney TC, Paulapuro H (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25:430–436

    CAS  Google Scholar 

  • Mark H (1940) Intermicellar hole and tube system in fiber structure. J Phys Chem 44:764–788. doi:10.1021/j150402a009

    Article  CAS  Google Scholar 

  • Matsuda Y, Isogai A, Onabe F (1994) Effects of thermal and hydrothermal treatments on the reswelling capabilities of pulps and paper sheets. J Pulp Pap Sci 20:J323–J327

    CAS  Google Scholar 

  • Nazhad MM, Paszner L (1994) Fundamentals of strength loss in recycled paper. Tappi J 77:171–179

    CAS  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi:10.1023/B:CELL.0000014768.28924.0c

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017. doi:10.1021/bm025772x

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Page DH (1985) The mechanism of strength development of dried pulps by heating. Sven Papperstidn 88:R30–R35

    CAS  Google Scholar 

  • Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. doi:10.1039/df9511100158

    Article  Google Scholar 

  • Rebuzzi F, Evtuguin DV (2006) Effect of glucuronoxylan on the hornification of Eucalyptus globulus bleached pulps. Macromol Symp 232:121–128. doi:10.1002/masy.200551414

    Article  CAS  Google Scholar 

  • Röder T, Sixta H (2004) Thermal treatment of cellulose pulps and its influence to cellulose reactivity. Lenzinger Ber 83:79–83

    Google Scholar 

  • Scallan AM, Tigerström AC (1992) Swelling and elasticity of the cell walls of pulp fibres. J Pulp Pap Sci 18:J188–J193

    Google Scholar 

  • Schneider M, Brinkmann M, Möhwald H (2003) Adsorption of polyethyleneimine on graphite: an atomic force microscopy study. Macromolecules 36:9510–9518. doi:10.1021/ma0345293

    Article  CAS  Google Scholar 

  • Staudinger H, Dohle W, Heick O (1942) Über topochemische Reaktionen der cellulose. J Prakt Chem 161:191–218. doi:10.1002/prac.19431610803

    Article  CAS  Google Scholar 

  • Steege H-H, Philipp B (1974) Herstellung, Charakterisierung und Anwendung mikrokristalliner Zellulose. Zellst Pap 23:68–73

    CAS  Google Scholar 

  • Stone JE, Scallan AM (1965) Effect of component removal upon the porous structure of the cell wall of wood. J Polym Sci C 11:13–25

    Google Scholar 

  • Unger E-W, Fink H-P, Philipp B (1995) Morphometrische Untersuchung des Quell- und Lösevorgangs von Cellulosefasern in EWNN und LiCl/Dimethylacetamid. Papier 49:297–307

    CAS  Google Scholar 

  • Welf ES, Venditti RA, Hubbe MA, Pawlak JJ (2005) The effects of heating without water removal and drying on the swelling as measured by water retention value and degradation as measured by intrinsic viscosity of cellulose papermaking fibers. Prog Pap Recycling 14:5–13

    CAS  Google Scholar 

  • Wistara N, Young RA (1999) Properties and treatments of pulps from recycled paper. Part I: physical and chemical properties of pulps. Cellulose 6:291–324. doi:10.1023/A:1009221125962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Timo Pääkkönen for laboratory assistance. Dr. Juha Linnekoski at the Department of Chemistry (TKK) is acknowledged for performing the sulfur analysis. The Finnish Funding Agency for Technology and Innovation (TEKES) as well as Andritz, UPM-Kymmene, Kemira, Metso, and M-real corporations are acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Kontturi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontturi, E., Vuorinen, T. Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying. Cellulose 16, 65–74 (2009). https://doi.org/10.1007/s10570-008-9235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9235-3

Keywords

Navigation