Skip to main content
Log in

The dissolution of cellulose in NaOH-based aqueous system by two-step process

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A new dissolution method, a two-step process, for cellulose in NaOH/urea aqueous system was investigated with 13C NMR, wide X-ray diffraction (WXRD), and solubility test. The two steps were as follows: (1) formation and swelling of a cellulose–NaOH complex and (2) dissolution of the cellulose–NaOH complex in aqueous urea solution. The dissolution mechanism could be described as strong interaction between cellulose and NaOH occurring in the aqueous system to disrupt the chain packing of original cellulose through the formation of new hydrogen bonds between cellulose and NaOH hydrates, and surrounding the cellulose–NaOH complex with urea hydrates to reduce the aggregation of the cellulose molecules. This leads to the improvement in solubility of the polymer and stability of the cellulose solutions. By using this two-step process, cellulose can be dissolved at 0–5 °C in contrast to the known process that requires −12 °C. Regenerated cellulose (RC) films with good mechanical properties and excellent optical transmittance were prepared successfully from the cellulose solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brown W, Wikstrom R (1965) A viscosity-molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation. Eur Polym J 1:1–10

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperature. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Heinze Th, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polymer 16:857–866

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24:71–86

    Article  CAS  Google Scholar 

  • Kaplan DL (1998) Biopolymers from renewable resources. Spinger, Berlin, p 55

    Google Scholar 

  • Kuo YN, Hong J (2005) Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym Adv Technol 16:425–428

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  • Nehls I, Wagenknecht W, Philipp B, Stscherbina D (1994) Characterization of cellulose and cellulose derivatives in solution by high resolution carbon-13 NMR spectrometry. Prog Polym Sci 19:29–78

    Article  CAS  Google Scholar 

  • Porro F, Bédué O, Chanzy H, Heux L (2007) Solid-state 13C NMR study of Na-cellulose complexes. Biomacromolecules 8:2586–2593

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P, Bedue O (2001) Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2:687–693

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4:1105–1112

    Article  CAS  Google Scholar 

  • Schurz J (1999) ‘Trends in Polymer Science’ a bright future for cellulose. Prog Polym Sci 24:481–483

    Article  CAS  Google Scholar 

  • Sobue H, Kiessig H, Hess K (1939) The system: cellulose-sodium hydroxide-water in relation to the temperature. Z Phys Chem B43:309–328

    CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384

    Article  CAS  Google Scholar 

  • Yamane C, Saito M, OkajimaK (1996) Manufacture of new cellulosic fibers from a spinning bath of an aqueous solution of alkali—soluble cellulose and caustic soda. Part 1. Development of a method for industrial preparation of an aqueous solution of highly soluble cellulose and caustic soda. Sen’i Gakkaishi

  • Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796

    Article  CAS  Google Scholar 

  • Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40:1521–1529

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L (2000) The solubility of cellulose in NaOH/urea aqueous solution. Polym J 10:866–870

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), National Supporting Project for Science and Technology (2006BAF02A09), the National High Technology Research and Development Program of China (863 Program, 2003AA333040 and 2006AA02Z102), major grants of the National Natural Science Foundation of China (30530850 and 59933070), the National Natural Science Foundation of China (20474048 and 20874079), and the Federal Ministry of Economics and Technology (DECHEMA Gesellschaft für Chemische Technik and Biotechnologie e.V., project number AiF 15875 BR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Zhang or Thomas Heinze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, H., Yang, Q., Zhang, L. et al. The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18, 237–245 (2011). https://doi.org/10.1007/s10570-010-9477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9477-8

Keywords

Navigation