Skip to main content
Erschienen in: Cellulose 5/2013

01.10.2013 | Review Paper

Cellulose reinforced polymer composites and nanocomposites: a critical review

verfasst von: Chuanwei Miao, Wadood Y. Hamad

Erschienen in: Cellulose | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review provides a critical assessment of the use of cellulosic materials for reinforcement in polymer composites. The review focuses on structure–property interrelationships and the compatibilization of cellulosic materials for optimal performance of the resulting composite materials. Optimal material and physical properties are characterized on the basis of the reinforcement’s physical dimension and the nature of the interface between reinforcement and matrix. We explore how very different cellulosic materials—bacterial, microcrystalline, microfibrillated or nanocrystalline—can cause distinctly different reinforcment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Cell here refers to a physical unit comprising a single fibre-matrix and their interactions.
 
2
Fluence is defined as the number of particles that intersect a unit area. The term is used in particular to describe the strength of a radiation field.
 
3
A conventional method to examine pulp fibre strength is to measure the zero-span strength of paper sheets. In order to compare the strength of individual MFC microfibrils with pulp fibres, the zero-span strength, or some similar concept, of MFC sheets and paper sheets is needed.
 
4
Stained with calcofluor dye for observation using a confocal laser scanning microscope.
 
5
The chemistry of CNC modification bears similarities to the methods used on macroscale cellulosic materials, which is reviewed in the previous section.
 
Literatur
Zurück zum Zitat Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794CrossRef Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794CrossRef
Zurück zum Zitat Adusumalli R-B, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244(1):119–125CrossRef Adusumalli R-B, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244(1):119–125CrossRef
Zurück zum Zitat Alam MK, Khan MA, Lehmann EH, Vontobel P (2007) Study of the water uptake and internal defects of jute-reinforced polymer composites with a digital neutron radiography technique. J Appl Polym Sci 105(4):1958–1963CrossRef Alam MK, Khan MA, Lehmann EH, Vontobel P (2007) Study of the water uptake and internal defects of jute-reinforced polymer composites with a digital neutron radiography technique. J Appl Polym Sci 105(4):1958–1963CrossRef
Zurück zum Zitat Alexander RJ (1992) Carbohydrates used as fat replacers. In: Alexander RJ, Zobel HE (eds) Developments in carbohydrate chemistry. Am. Assoc. Cereal Chem, St. Paul, MN, pp 343–370 Alexander RJ (1992) Carbohydrates used as fat replacers. In: Alexander RJ, Zobel HE (eds) Developments in carbohydrate chemistry. Am. Assoc. Cereal Chem, St. Paul, MN, pp 343–370
Zurück zum Zitat Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispersion Sci Technol 28(6):837–844CrossRef Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispersion Sci Technol 28(6):837–844CrossRef
Zurück zum Zitat Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000) Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crops Prod 11(2–3):145–161CrossRef Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000) Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crops Prod 11(2–3):145–161CrossRef
Zurück zum Zitat Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353CrossRef Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353CrossRef
Zurück zum Zitat Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931CrossRef Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931CrossRef
Zurück zum Zitat Angles MN, Vignon MR, Dufresne A (2000a) Plasticized starch and cellulose whiskers composites. Mater Tech 88(7–8):59–61 Angles MN, Vignon MR, Dufresne A (2000a) Plasticized starch and cellulose whiskers composites. Mater Tech 88(7–8):59–61
Zurück zum Zitat Angles MN, Vignon MR, Dufresne A (2000b) Plasticized starch and cellulose whiskers composites. Mater Tech (Paris) 88(7–8):59–61 Angles MN, Vignon MR, Dufresne A (2000b) Plasticized starch and cellulose whiskers composites. Mater Tech (Paris) 88(7–8):59–61
Zurück zum Zitat Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82CrossRef Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45(3):258–261CrossRef Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45(3):258–261CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27CrossRef
Zurück zum Zitat Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capbility. Cellulose 6:57CrossRef Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capbility. Cellulose 6:57CrossRef
Zurück zum Zitat Augier L, Sperone G, Vaca-Garcia C, Borredon ME (2007) Influence of the wood fibre filler on the internal recycling of poly (vinyl chloride)-based composites. Polym Degrad Stab 92(7):1169–1176CrossRef Augier L, Sperone G, Vaca-Garcia C, Borredon ME (2007) Influence of the wood fibre filler on the internal recycling of poly (vinyl chloride)-based composites. Polym Degrad Stab 92(7):1169–1176CrossRef
Zurück zum Zitat Bailie C (2005) Green composites: polymer composites and the environment. CRC Press, Boca Raton, FLCrossRef Bailie C (2005) Green composites: polymer composites and the environment. CRC Press, Boca Raton, FLCrossRef
Zurück zum Zitat Bataille P, Dufourd M, Sapieha S (1994) Copolymerization of styrene onto cellulose activated by corona. Polym Int 34(4):387–391CrossRef Bataille P, Dufourd M, Sapieha S (1994) Copolymerization of styrene onto cellulose activated by corona. Polym Int 34(4):387–391CrossRef
Zurück zum Zitat Battista OA, Smith PA (1962) Microcrystalline cellulose. J Ind Eng Chem 54(9):20CrossRef Battista OA, Smith PA (1962) Microcrystalline cellulose. J Ind Eng Chem 54(9):20CrossRef
Zurück zum Zitat Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Relation to polyphase structure of cellulose fibers. J Ind Eng Chem 48:333CrossRef Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Relation to polyphase structure of cellulose fibers. J Ind Eng Chem 48:333CrossRef
Zurück zum Zitat Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317CrossRef Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317CrossRef
Zurück zum Zitat Beg MDH, Pickering KL, Weal SJ (2005) Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites. Mater Sci Eng, A 412(1–2):7–11 Beg MDH, Pickering KL, Weal SJ (2005) Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites. Mater Sci Eng, A 412(1–2):7–11
Zurück zum Zitat Belgacem MN, Gandini A (2005a) Surface modification of cellulose fibres. Polim Cienc Tecnol 15(2):114–121CrossRef Belgacem MN, Gandini A (2005a) Surface modification of cellulose fibres. Polim Cienc Tecnol 15(2):114–121CrossRef
Zurück zum Zitat Belgacem MN, Gandini A (2005b) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75CrossRef Belgacem MN, Gandini A (2005b) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75CrossRef
Zurück zum Zitat Benerito RR, Ward TL, Soignet DM, Hinojosa O (1981) Modifications of cotton cellulose surfaces by use of radiofrequency cold plasmas and characterization of surface changes by ESCA. Text Res J 51(4):224–232CrossRef Benerito RR, Ward TL, Soignet DM, Hinojosa O (1981) Modifications of cotton cellulose surfaces by use of radiofrequency cold plasmas and characterization of surface changes by ESCA. Text Res J 51(4):224–232CrossRef
Zurück zum Zitat Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268CrossRef Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268CrossRef
Zurück zum Zitat Bisanda ETN, Ansell MP (1992) Properties of sisal-CNSL composites. J Mater Sci 27(6):1690–1700CrossRef Bisanda ETN, Ansell MP (1992) Properties of sisal-CNSL composites. J Mater Sci 27(6):1690–1700CrossRef
Zurück zum Zitat Bledzki AK, Faruk O (2006a) Influence of processing temperature on microcellular injection-moulded wood-polypropylene composites. Macromol Mater Eng 291(10):1226–1232CrossRef Bledzki AK, Faruk O (2006a) Influence of processing temperature on microcellular injection-moulded wood-polypropylene composites. Macromol Mater Eng 291(10):1226–1232CrossRef
Zurück zum Zitat Bledzki AK, Faruk O (2006b) Microcellular wood fibre reinforced PP composites: a comparative study between extrusion, injection moulding and compression moulding. Int Polym Process 21(3):256–262 Bledzki AK, Faruk O (2006b) Microcellular wood fibre reinforced PP composites: a comparative study between extrusion, injection moulding and compression moulding. Int Polym Process 21(3):256–262
Zurück zum Zitat Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRef
Zurück zum Zitat Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336CrossRef Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336CrossRef
Zurück zum Zitat Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibers. Macromol Mater Eng 291(5):449–457CrossRef Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibers. Macromol Mater Eng 291(5):449–457CrossRef
Zurück zum Zitat Boissard CIR, Bourban P-E, Plummer CJG, Neagu RC, Månson J-AE (2012) Cellular biocomposites from polylactide and microfibrillated cellulose. J Cell Plast 48(5):445–458 Boissard CIR, Bourban P-E, Plummer CJG, Neagu RC, Månson J-AE (2012) Cellular biocomposites from polylactide and microfibrillated cellulose. J Cell Plast 48(5):445–458
Zurück zum Zitat Boldizar A, Klason C, Kubat J, Naeslund P, Saha P (1987) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater 11(4):229–262CrossRef Boldizar A, Klason C, Kubat J, Naeslund P, Saha P (1987) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater 11(4):229–262CrossRef
Zurück zum Zitat Bondeson D, Oksman K (2007a) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRef Bondeson D, Oksman K (2007a) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRef
Zurück zum Zitat Bondeson D, Oksman K (2007b) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos A 38(12):2486–2492CrossRef Bondeson D, Oksman K (2007b) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos A 38(12):2486–2492CrossRef
Zurück zum Zitat Bonini C, Heux L, Cavaille J-Y (2000) Polypropylene reinforced with cellulose whiskers. Mater Tech 88(7–8):55–58 Bonini C, Heux L, Cavaille J-Y (2000) Polypropylene reinforced with cellulose whiskers. Mater Tech 88(7–8):55–58
Zurück zum Zitat Bonini C, Heux L, Cavaille J-Y, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18(8):3311–3314CrossRef Bonini C, Heux L, Cavaille J-Y, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18(8):3311–3314CrossRef
Zurück zum Zitat Borges JP, Godinho MH, Martins AF, Stamatialis DF, De Pinho MN, Belgacem MN (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25(1):102–110CrossRef Borges JP, Godinho MH, Martins AF, Stamatialis DF, De Pinho MN, Belgacem MN (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25(1):102–110CrossRef
Zurück zum Zitat Bos HL, Van den Oever MJA (1999) The large influence of flax fiber structure on composite strength. Paper presented at the international conference on woodfiber-plastic composites, 5th, Madison, WI, United States, May 26–27, 1999 Bos HL, Van den Oever MJA (1999) The large influence of flax fiber structure on composite strength. Paper presented at the international conference on woodfiber-plastic composites, 5th, Madison, WI, United States, May 26–27, 1999
Zurück zum Zitat Bos HL, Molenveld K, Teunissen W, van Wingerde AM, van Delft DRV (2004) Compressive behaviour of unidirectional flax fibre reinforced composites. J Mater Sci 39(6):2159–2168CrossRef Bos HL, Molenveld K, Teunissen W, van Wingerde AM, van Delft DRV (2004) Compressive behaviour of unidirectional flax fibre reinforced composites. J Mater Sci 39(6):2159–2168CrossRef
Zurück zum Zitat Botaro VR, dos Santos CG, Arantes Junior G, da Costa AR (2001) Chemical modification of lignocellulosic materials by irradiation with Nd-YAG pulsed laser. Appl Surf Sci 183(1–2):120–125CrossRef Botaro VR, dos Santos CG, Arantes Junior G, da Costa AR (2001) Chemical modification of lignocellulosic materials by irradiation with Nd-YAG pulsed laser. Appl Surf Sci 183(1–2):120–125CrossRef
Zurück zum Zitat Boufi S, Gandini A (2001) Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4):303–312CrossRef Boufi S, Gandini A (2001) Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4):303–312CrossRef
Zurück zum Zitat Buliga GS, Tuason DC Jr, Venables AC (1998) Microcrystalline cellulose-containing texture and stabilizer composition for food. WO Patent 9833394 Buliga GS, Tuason DC Jr, Venables AC (1998) Microcrystalline cellulose-containing texture and stabilizer composition for food. WO Patent 9833394
Zurück zum Zitat Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2(12):765–769CrossRef Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2(12):765–769CrossRef
Zurück zum Zitat Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370CrossRef Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370CrossRef
Zurück zum Zitat Carlsson CMG, Ström G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7(11):2492–2497CrossRef Carlsson CMG, Ström G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7(11):2492–2497CrossRef
Zurück zum Zitat Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibers with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511CrossRef Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibers with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511CrossRef
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58CrossRef Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58CrossRef
Zurück zum Zitat Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4):2025–2031CrossRef Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4):2025–2031CrossRef
Zurück zum Zitat Chazeau L, Cavaille JY, Canova G, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71(11):1797–1808CrossRef Chazeau L, Cavaille JY, Canova G, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71(11):1797–1808CrossRef
Zurück zum Zitat Chen H-L, Porter RS (1994) Composite of polyethylene and kenaf, a natural cellulose fiber. J Appl Polym Sci 54(11):1781–1783CrossRef Chen H-L, Porter RS (1994) Composite of polyethylene and kenaf, a natural cellulose fiber. J Appl Polym Sci 54(11):1781–1783CrossRef
Zurück zum Zitat Chen J, Tsubokawa N (2000) Electric properties of conducting composite from poly(ethylene oxide) and poly(ethylene oxide)-grafted carbon black in solvent vapor. Polym J 32(9):729–736CrossRef Chen J, Tsubokawa N (2000) Electric properties of conducting composite from poly(ethylene oxide) and poly(ethylene oxide)-grafted carbon black in solvent vapor. Polym J 32(9):729–736CrossRef
Zurück zum Zitat Chen YM, Gong JP, Osada Y (2007) Gel: a potential material as artificial soft tissue. Macromol Eng 4:2689–2717 Chen YM, Gong JP, Osada Y (2007) Gel: a potential material as artificial soft tissue. Macromol Eng 4:2689–2717
Zurück zum Zitat Chen D, Lawton D, Thompson MR, Liu Q (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90(1):709–716CrossRef Chen D, Lawton D, Thompson MR, Liu Q (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90(1):709–716CrossRef
Zurück zum Zitat Clarke AR, Archenhold G, Davidson NC (1995) A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Compos Sci Technol 55(1):75–91CrossRef Clarke AR, Archenhold G, Davidson NC (1995) A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Compos Sci Technol 55(1):75–91CrossRef
Zurück zum Zitat Datta C, Basu D, Roy A, Banerjee A (2004) Mechanical and dynamic mechanical studies of epoxy/VAc-EHA/HMMM IPN-jute composite systems. J Appl Polym Sci 91(2):958–963CrossRef Datta C, Basu D, Roy A, Banerjee A (2004) Mechanical and dynamic mechanical studies of epoxy/VAc-EHA/HMMM IPN-jute composite systems. J Appl Polym Sci 91(2):958–963CrossRef
Zurück zum Zitat De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY
Zurück zum Zitat De SK, Murty VM (1984) Short fiber-rubber composites. Polym Eng Rev 4(4):313–343 De SK, Murty VM (1984) Short fiber-rubber composites. Polym Eng Rev 4(4):313–343
Zurück zum Zitat Dikobe DG, Luyt AS (2007) Effect of poly (ethylene-co-glycidyl methacrylate) compatibilizer content on the morphology and physical properties of ethylene vinyl acetate-wood fiber composites. J Appl Polym Sci 104(5):3206–3213CrossRef Dikobe DG, Luyt AS (2007) Effect of poly (ethylene-co-glycidyl methacrylate) compatibilizer content on the morphology and physical properties of ethylene vinyl acetate-wood fiber composites. J Appl Polym Sci 104(5):3206–3213CrossRef
Zurück zum Zitat Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13(3):275–283CrossRef Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13(3):275–283CrossRef
Zurück zum Zitat Doan T–T-L, Gao S-L, Maeder E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66(7–8):952–963CrossRef Doan T–T-L, Gao S-L, Maeder E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66(7–8):952–963CrossRef
Zurück zum Zitat Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRef Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRef
Zurück zum Zitat Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87(4):2488–2495CrossRef Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87(4):2488–2495CrossRef
Zurück zum Zitat Duanmu J, Gamstedt EK, Rosling A (2007) Synthesis and preparation of crosslinked allylglycidyl ether-modified starch-wood fibre composites. Starch 59:523–532CrossRef Duanmu J, Gamstedt EK, Rosling A (2007) Synthesis and preparation of crosslinked allylglycidyl ether-modified starch-wood fibre composites. Starch 59:523–532CrossRef
Zurück zum Zitat Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly (β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32(18):5765–5771CrossRef Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly (β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32(18):5765–5771CrossRef
Zurück zum Zitat Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69(7–8):1225–1230CrossRef Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69(7–8):1225–1230CrossRef
Zurück zum Zitat Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7(1):53–67CrossRef Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7(1):53–67CrossRef
Zurück zum Zitat Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10(4–5):369–387CrossRef Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10(4–5):369–387CrossRef
Zurück zum Zitat Dufresne A, Cavaille J-Y, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18(2):198–210CrossRef Dufresne A, Cavaille J-Y, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18(2):198–210CrossRef
Zurück zum Zitat Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32(22):7396–7401CrossRef Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32(22):7396–7401CrossRef
Zurück zum Zitat Edge S, Steele DF, Chen A, Tobyn MJ, Staniforth JN (2000) The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm 200(1):67–72CrossRef Edge S, Steele DF, Chen A, Tobyn MJ, Staniforth JN (2000) The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm 200(1):67–72CrossRef
Zurück zum Zitat Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRef Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRef
Zurück zum Zitat Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197–207CrossRef Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197–207CrossRef
Zurück zum Zitat Eichhorn SJ, Young RJ (2004) Composite micromechanics of hemp fibres and epoxy resin microdroplets. Compos Sci Technol 64(5):767–772CrossRef Eichhorn SJ, Young RJ (2004) Composite micromechanics of hemp fibres and epoxy resin microdroplets. Compos Sci Technol 64(5):767–772CrossRef
Zurück zum Zitat Elazzouzi S, Nishiyama Y, Putaux J-L, Paintrand I, Schmutz M, Heux L (2006) Chiral nematic suspensions of cellulose whiskers in water and in organic solvents. Paper presented at the 231st ACS National Meeting, Atlanta, GA, United States Elazzouzi S, Nishiyama Y, Putaux J-L, Paintrand I, Schmutz M, Heux L (2006) Chiral nematic suspensions of cellulose whiskers in water and in organic solvents. Paper presented at the 231st ACS National Meeting, Atlanta, GA, United States
Zurück zum Zitat Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18(7):917–923CrossRef Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18(7):917–923CrossRef
Zurück zum Zitat Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef
Zurück zum Zitat Favier V, Chanzy H, Cavaille JY (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367CrossRef
Zurück zum Zitat Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739CrossRef Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739CrossRef
Zurück zum Zitat Fedullo N, Sorlier E, Sclavons M, Bailly C, Lefebvre JM, Devaux J (2007) Polymer-based nanocomposites: overview, applications and perspectives. Prog Org Coat 58(2–3):87–95CrossRef Fedullo N, Sorlier E, Sclavons M, Bailly C, Lefebvre JM, Devaux J (2007) Polymer-based nanocomposites: overview, applications and perspectives. Prog Org Coat 58(2–3):87–95CrossRef
Zurück zum Zitat Fekete R, Zelko R, Marton S, Racz I (1998) Effect of the formulation parameters on the characteristics of pellets. Drug Dev Ind Pharm 24(11):1073–1076CrossRef Fekete R, Zelko R, Marton S, Racz I (1998) Effect of the formulation parameters on the characteristics of pellets. Drug Dev Ind Pharm 24(11):1073–1076CrossRef
Zurück zum Zitat Felix J, Gatenholm P, Schreiber HP (1994) Plasma modification of cellulose fibers: effects on some polymer composite properties. J Appl Polym Sci 51(2):285–295CrossRef Felix J, Gatenholm P, Schreiber HP (1994) Plasma modification of cellulose fibers: effects on some polymer composite properties. J Appl Polym Sci 51(2):285–295CrossRef
Zurück zum Zitat Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524CrossRef Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524CrossRef
Zurück zum Zitat Forgacs OL (1963) The characterization of mechanical pulps. Pulp Paper Mag Can 64(C):T89 Forgacs OL (1963) The characterization of mechanical pulps. Pulp Paper Mag Can 64(C):T89
Zurück zum Zitat Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119:80CrossRef Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119:80CrossRef
Zurück zum Zitat Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioRes 6(1):487–512 Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioRes 6(1):487–512
Zurück zum Zitat Fukuda S, Takahashi M, Yuyama M, Oka N (2001) Incontinence pads using highly absorbent sheets. JP Patent 2001340369 Fukuda S, Takahashi M, Yuyama M, Oka N (2001) Incontinence pads using highly absorbent sheets. JP Patent 2001340369
Zurück zum Zitat Funami T, Kishimoto K, Tsutsumino T (2006) Food gels for distribution at normal temperature. JP Patent 2006212006 Funami T, Kishimoto K, Tsutsumino T (2006) Food gels for distribution at normal temperature. JP Patent 2006212006
Zurück zum Zitat Fung CP (2004) Fibre orientation of fibre-reinforced PBT composites in injection moulding. Plast, Rubber Compos 33(4):170–176CrossRef Fung CP (2004) Fibre orientation of fibre-reinforced PBT composites in injection moulding. Plast, Rubber Compos 33(4):170–176CrossRef
Zurück zum Zitat Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46(23):10221–10225CrossRef Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46(23):10221–10225CrossRef
Zurück zum Zitat Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006a) Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films. Biomacromolecules 7(11):3146–3150CrossRef Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006a) Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films. Biomacromolecules 7(11):3146–3150CrossRef
Zurück zum Zitat Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006b) Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction. Compos Sci Technol 66(15):2639–2647CrossRef Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006b) Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction. Compos Sci Technol 66(15):2639–2647CrossRef
Zurück zum Zitat Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRef Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRef
Zurück zum Zitat Graenacher C (1934) Cellulose solution. US Patent 1943176 Graenacher C (1934) Cellulose solution. US Patent 1943176
Zurück zum Zitat Grishanov SA, Harwood RJ, Booth I (2006) A method of estimating the single flax fibre fineness using data from the LaserScan system. Ind Crops Prod 23(3):273–287CrossRef Grishanov SA, Harwood RJ, Booth I (2006) A method of estimating the single flax fibre fineness using data from the LaserScan system. Ind Crops Prod 23(3):273–287CrossRef
Zurück zum Zitat Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1/2):27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1/2):27–30CrossRef
Zurück zum Zitat Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646CrossRef Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646CrossRef
Zurück zum Zitat Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037CrossRef Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037CrossRef
Zurück zum Zitat Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRef Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
Zurück zum Zitat Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRef Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRef
Zurück zum Zitat Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43(5):2235–2241CrossRef Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43(5):2235–2241CrossRef
Zurück zum Zitat Hamad WY (2002) Cellulosic materials-fibers, networks and composites. Kluwer Academic Publishers, MassachusettsCrossRef Hamad WY (2002) Cellulosic materials-fibers, networks and composites. Kluwer Academic Publishers, MassachusettsCrossRef
Zurück zum Zitat Hamad WY, Eichhorn S (1997) Deformation micromechanics of regenerated cellulose fibers using Raman spectroscopy. J Eng Mater Technol 119(3):309–313CrossRef Hamad WY, Eichhorn S (1997) Deformation micromechanics of regenerated cellulose fibers using Raman spectroscopy. J Eng Mater Technol 119(3):309–313CrossRef
Zurück zum Zitat Hammersley JM (1957) Percolation processes. II. The connective constant. Proc Camb Philol Soc 53:642–645CrossRef Hammersley JM (1957) Percolation processes. II. The connective constant. Proc Camb Philol Soc 53:642–645CrossRef
Zurück zum Zitat Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79(3):614–619CrossRef Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79(3):614–619CrossRef
Zurück zum Zitat Hancock BC, Clas SD, Christensen K (2000) Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: the elasticity and fracture behavior of microcrystalline cellulose. Int J Pharm 209(1–2):27–35CrossRef Hancock BC, Clas SD, Christensen K (2000) Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: the elasticity and fracture behavior of microcrystalline cellulose. Int J Pharm 209(1–2):27–35CrossRef
Zurück zum Zitat Hatakeyama H, Kato N, Nanbo T, Hatakeyama T (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47(20):7254–7261CrossRef Hatakeyama H, Kato N, Nanbo T, Hatakeyama T (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47(20):7254–7261CrossRef
Zurück zum Zitat Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17(4):604–611CrossRef Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17(4):604–611CrossRef
Zurück zum Zitat Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817–2824CrossRef Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817–2824CrossRef
Zurück zum Zitat Henriksson M, Henriksson G, Berglund LA, Lindstroem T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441CrossRef Henriksson M, Henriksson G, Berglund LA, Lindstroem T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441CrossRef
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindstroem T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstroem T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef
Zurück zum Zitat Hileman GA, Upadrashta SM, Neau SH (1997) Drug solubility effects on predicting optimum conditions for extrusion and spheronization of pellets. Pharm Dev Technol 2(1):43–52CrossRef Hileman GA, Upadrashta SM, Neau SH (1997) Drug solubility effects on predicting optimum conditions for extrusion and spheronization of pellets. Pharm Dev Technol 2(1):43–52CrossRef
Zurück zum Zitat Hokens D, Mohanty AK, Misra M, Drzal LT (2002) The influence of surface modification and compatibilization on the performance of natural fiber reinforced biodegradable thermoplastic composite. Polymer Prepr 43(1):482–483 Hokens D, Mohanty AK, Misra M, Drzal LT (2002) The influence of surface modification and compatibilization on the performance of natural fiber reinforced biodegradable thermoplastic composite. Polymer Prepr 43(1):482–483
Zurück zum Zitat Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619CrossRef Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619CrossRef
Zurück zum Zitat Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513CrossRef Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513CrossRef
Zurück zum Zitat Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2012a) Solvent infusion processing of all-cellulose composite materials. Carbohydr Polym 90(1):730–733CrossRef Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2012a) Solvent infusion processing of all-cellulose composite materials. Carbohydr Polym 90(1):730–733CrossRef
Zurück zum Zitat Huber T, Mössig J, Curnow O, Pang S, Bickerton S, Staiger M (2012b) A critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186CrossRef Huber T, Mössig J, Curnow O, Pang S, Bickerton S, Staiger M (2012b) A critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186CrossRef
Zurück zum Zitat Huber T, Pang S, Staiger MP (2012c) All-cellulose composite laminates. Compos A 43(10):1738–1745CrossRef Huber T, Pang S, Staiger MP (2012c) All-cellulose composite laminates. Compos A 43(10):1738–1745CrossRef
Zurück zum Zitat Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869CrossRef Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869CrossRef
Zurück zum Zitat Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, CambridgeCrossRef Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763CrossRef Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763CrossRef
Zurück zum Zitat Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725CrossRef Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725CrossRef
Zurück zum Zitat Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J (1998) Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett 432(3):113–116CrossRef Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J (1998) Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett 432(3):113–116CrossRef
Zurück zum Zitat Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecues 10(9):2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecues 10(9):2571–2576CrossRef
Zurück zum Zitat Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106CrossRef Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106CrossRef
Zurück zum Zitat Jing H, Liu Z, Li H-y, Wang G-h, Pu J-w (2007) Solubility of wood-cellulose in LiCl/DMAC solvent system. For Stud China 9(3):217–220CrossRef Jing H, Liu Z, Li H-y, Wang G-h, Pu J-w (2007) Solubility of wood-cellulose in LiCl/DMAC solvent system. For Stud China 9(3):217–220CrossRef
Zurück zum Zitat Joly C, Kofman M, Gauthier R (1996) Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Macromol Sci, Pure Appl Chem A33(12):1981–1996CrossRef Joly C, Kofman M, Gauthier R (1996) Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Macromol Sci, Pure Appl Chem A33(12):1981–1996CrossRef
Zurück zum Zitat Kachrimanis K, Malamataris S (2004) “Apparent” Young’s elastic modulus and radial recovery for some tableted pharmaceutical excipients. Eur J Pharm Sci 21(2–3):197–207CrossRef Kachrimanis K, Malamataris S (2004) “Apparent” Young’s elastic modulus and radial recovery for some tableted pharmaceutical excipients. Eur J Pharm Sci 21(2–3):197–207CrossRef
Zurück zum Zitat Kaith BS, Singha AS, Dwivedi DK, Kumar S, Kumar D, Dhemeniya A (2003) Preparation of polystyrene matrix based composites using flax-g-copolymers as reinforcing agent and evaluation of their mechanical behaviour. Int J Plast Technol 7(2):119–125 Kaith BS, Singha AS, Dwivedi DK, Kumar S, Kumar D, Dhemeniya A (2003) Preparation of polystyrene matrix based composites using flax-g-copolymers as reinforcing agent and evaluation of their mechanical behaviour. Int J Plast Technol 7(2):119–125
Zurück zum Zitat Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of woodfiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A 38(2):227–233CrossRef Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of woodfiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A 38(2):227–233CrossRef
Zurück zum Zitat Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45(12):4227–4239CrossRef Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45(12):4227–4239CrossRef
Zurück zum Zitat Kato K, Vasilets VN, Fursa MN, Meguro M, Ikada Y, Nakamae K (1999) Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation. J Polym Sci, Part A: Polym Chem 37(3):357–361CrossRef Kato K, Vasilets VN, Fursa MN, Meguro M, Ikada Y, Nakamae K (1999) Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation. J Polym Sci, Part A: Polym Chem 37(3):357–361CrossRef
Zurück zum Zitat Keller A (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol 63(9):1307–1316CrossRef Keller A (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol 63(9):1307–1316CrossRef
Zurück zum Zitat Khan M, Haque N, Al-Kafi A, Alam MN, Abedin MZ (2006) Jute reinforced polymer composite by gamma radiation: effect of surface treatment with UV radiation. Polym Plast Technol Eng 45(5):607–613CrossRef Khan M, Haque N, Al-Kafi A, Alam MN, Abedin MZ (2006) Jute reinforced polymer composite by gamma radiation: effect of surface treatment with UV radiation. Polym Plast Technol Eng 45(5):607–613CrossRef
Zurück zum Zitat Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601–1608CrossRef Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601–1608CrossRef
Zurück zum Zitat Kiziltas A, Gardner DJ, Han Y, Yang H-S (2011a) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochim Acta 519(1–2):38–43CrossRef Kiziltas A, Gardner DJ, Han Y, Yang H-S (2011a) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochim Acta 519(1–2):38–43CrossRef
Zurück zum Zitat Kiziltas A, Gardner DJ, Han Y, Yang H-S (2011b) Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. J Therm Anal Calorim 103(1):163–170CrossRef Kiziltas A, Gardner DJ, Han Y, Yang H-S (2011b) Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. J Therm Anal Calorim 103(1):163–170CrossRef
Zurück zum Zitat Kolar J, Strlic M, Müller-Hess D, Gruber A, Troschke K, Pentzien S, Kautek W (2000) Near-UV and visible pulsed laser interaction with paper. J Cult Herit 1:S221–S224CrossRef Kolar J, Strlic M, Müller-Hess D, Gruber A, Troschke K, Pentzien S, Kautek W (2000) Near-UV and visible pulsed laser interaction with paper. J Cult Herit 1:S221–S224CrossRef
Zurück zum Zitat Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46(17):6380–6390CrossRef Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46(17):6380–6390CrossRef
Zurück zum Zitat Krogars K, Heinamaki J, Vesalahti J, Marvola M, Antikainen O, Yliruusi J (2000) Extrusion-spheronization of pH-sensitive polymeric matrix pellets for possible colonic drug delivery. Int J Pharm 199(2):187–194CrossRef Krogars K, Heinamaki J, Vesalahti J, Marvola M, Antikainen O, Yliruusi J (2000) Extrusion-spheronization of pH-sensitive polymeric matrix pellets for possible colonic drug delivery. Int J Pharm 199(2):187–194CrossRef
Zurück zum Zitat Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195CrossRef Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195CrossRef
Zurück zum Zitat Kumar V, Medina MDLR, Leuenberger H (2005) Crosslinked powered/microfibrillated cellulose II as a pharmaceutical excipient. US Patent 2005287208 Kumar V, Medina MDLR, Leuenberger H (2005) Crosslinked powered/microfibrillated cellulose II as a pharmaceutical excipient. US Patent 2005287208
Zurück zum Zitat Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171CrossRef Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171CrossRef
Zurück zum Zitat Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef
Zurück zum Zitat Laka M, Chernyavskaya S, Maskavs M (2003) Cellulose-containing fillers for polymer composites. Mech Compos Mater 39(2):183–188CrossRef Laka M, Chernyavskaya S, Maskavs M (2003) Cellulose-containing fillers for polymer composites. Mech Compos Mater 39(2):183–188CrossRef
Zurück zum Zitat Lee SY, Kang IA, Doh GH, Yoon HG, Park BD (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223CrossRef Lee SY, Kang IA, Doh GH, Yoon HG, Park BD (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223CrossRef
Zurück zum Zitat Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos A 38(7):1664–1674CrossRef Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos A 38(7):1664–1674CrossRef
Zurück zum Zitat Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibers. Holzforschung 48(Suppl.):72–76CrossRef Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibers. Holzforschung 48(Suppl.):72–76CrossRef
Zurück zum Zitat Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92(2):2128–2134CrossRef Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92(2):2128–2134CrossRef
Zurück zum Zitat Limwong V, Sutanthavibul N, Kulvanich P (2004) Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression. AAPS PharmSciTech 5(2):e30CrossRef Limwong V, Sutanthavibul N, Kulvanich P (2004) Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression. AAPS PharmSciTech 5(2):e30CrossRef
Zurück zum Zitat Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113(5):3417–3425CrossRef Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113(5):3417–3425CrossRef
Zurück zum Zitat Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRef Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRef
Zurück zum Zitat Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292CrossRef Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292CrossRef
Zurück zum Zitat Lu JZ, Negulescu II, Wu Q (2005a) Maleated wood-fiber/high-density-polyethylene composites: coupling mechanisms and interfacial characterization. Compos Interfaces 12(1):125–140CrossRef Lu JZ, Negulescu II, Wu Q (2005a) Maleated wood-fiber/high-density-polyethylene composites: coupling mechanisms and interfacial characterization. Compos Interfaces 12(1):125–140CrossRef
Zurück zum Zitat Lu JZ, Wu Q, Negulescu II (2005b) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96(1):93–102CrossRef Lu JZ, Wu Q, Negulescu II (2005b) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96(1):93–102CrossRef
Zurück zum Zitat Lu W, Lin H, Chen G (2007) Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite. J Polym Sci, Part B: Polym Phys 45(7):860–863CrossRef Lu W, Lin H, Chen G (2007) Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite. J Polym Sci, Part B: Polym Phys 45(7):860–863CrossRef
Zurück zum Zitat Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296CrossRef Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296CrossRef
Zurück zum Zitat Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2–3):193–196CrossRef Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2–3):193–196CrossRef
Zurück zum Zitat Luukkonen P, Schaefer T, Hellen L, Juppo AM, Yliruusi J (1999) Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Pharm 188(2):181–192CrossRef Luukkonen P, Schaefer T, Hellen L, Juppo AM, Yliruusi J (1999) Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Pharm 188(2):181–192CrossRef
Zurück zum Zitat Ma H, Zhou B, Li H-S, Li Y-Q, Ou S-Y (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84(1):383–389CrossRef Ma H, Zhou B, Li H-S, Li Y-Q, Ou S-Y (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84(1):383–389CrossRef
Zurück zum Zitat Maldas D, Kokta BV (1990) Effect of fiber treatment on the mechanical properties of hybrid fiber-reinforced polystyrene composites. I. Use of mica and wood pulp as hybrid filler. J Compos Technol Res 12(4):217–221CrossRef Maldas D, Kokta BV (1990) Effect of fiber treatment on the mechanical properties of hybrid fiber-reinforced polystyrene composites. I. Use of mica and wood pulp as hybrid filler. J Compos Technol Res 12(4):217–221CrossRef
Zurück zum Zitat Maldas D, Kokta BV (1991a) Effect of fiber treatment on the mechanical properties of hybrid fiber reinforced polystyrene composites: IV. Use of glass fiber and sawdust as hybrid fiber. J Compos Mater 25(4):375–390 Maldas D, Kokta BV (1991a) Effect of fiber treatment on the mechanical properties of hybrid fiber reinforced polystyrene composites: IV. Use of glass fiber and sawdust as hybrid fiber. J Compos Mater 25(4):375–390
Zurück zum Zitat Maldas D, Kokta BV (1991b) Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions. IV. Use of glass fiber and sawdust as hybrid fiber. J Appl Polym Sci 42(5):1443–1450CrossRef Maldas D, Kokta BV (1991b) Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions. IV. Use of glass fiber and sawdust as hybrid fiber. J Appl Polym Sci 42(5):1443–1450CrossRef
Zurück zum Zitat Maldas D, Kokta BV (1991c) Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions: part I—use of mica and wood pulp as hybrid fiber. Polym Degrad Stab 31(1):9–21CrossRef Maldas D, Kokta BV (1991c) Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions: part I—use of mica and wood pulp as hybrid fiber. Polym Degrad Stab 31(1):9–21CrossRef
Zurück zum Zitat Maldas D, Kokta BV (1992) Performance of hybrid reinforcements in PVC composites: III. Use of surface-modified glass fiber and wood pulp as reinforcements. J Reinf Plast Compos 11(10):1093–1102CrossRef Maldas D, Kokta BV (1992) Performance of hybrid reinforcements in PVC composites: III. Use of surface-modified glass fiber and wood pulp as reinforcements. J Reinf Plast Compos 11(10):1093–1102CrossRef
Zurück zum Zitat Manchado MAL, Arroyo M, Biagiotti J, Kenny JM (2003) Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. J Appl Polym Sci 90(8):2170–2178CrossRef Manchado MAL, Arroyo M, Biagiotti J, Kenny JM (2003) Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. J Appl Polym Sci 90(8):2170–2178CrossRef
Zurück zum Zitat Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(Suppl. No. 9):632CrossRef Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(Suppl. No. 9):632CrossRef
Zurück zum Zitat Marins J, Soares B, Dahmouche K, Ribeiro SL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294CrossRef Marins J, Soares B, Dahmouche K, Ribeiro SL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294CrossRef
Zurück zum Zitat Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3(3):609–617CrossRef Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3(3):609–617CrossRef
Zurück zum Zitat Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef
Zurück zum Zitat Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites-processing, characterization and properties. American Chemical Society, Washington DC, p 114CrossRef Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites-processing, characterization and properties. American Chemical Society, Washington DC, p 114CrossRef
Zurück zum Zitat Matsuda Y (2000) Properties and use of microfibrillated cellulose as papermaking additive. Sen’i Gakkaishi 56(7):192–196CrossRef Matsuda Y (2000) Properties and use of microfibrillated cellulose as papermaking additive. Sen’i Gakkaishi 56(7):192–196CrossRef
Zurück zum Zitat Mehta G, Mohanty AK, Drzal LT, Misra M (2003) Bio-composites from engineered kenaf natural fibers and unsaturated polyester resin for low cost housing applications. PMSE Prepr 88:56–57 Mehta G, Mohanty AK, Drzal LT, Misra M (2003) Bio-composites from engineered kenaf natural fibers and unsaturated polyester resin for low cost housing applications. PMSE Prepr 88:56–57
Zurück zum Zitat Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79B(2):245–253CrossRef Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79B(2):245–253CrossRef
Zurück zum Zitat Mirbagheri J, Tajvidi M, Hermanson JC, Ghasemi I (2007) Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites. J Appl Polym Sci 105(5):3054–3059CrossRef Mirbagheri J, Tajvidi M, Hermanson JC, Ghasemi I (2007) Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites. J Appl Polym Sci 105(5):3054–3059CrossRef
Zurück zum Zitat Mizoguchi K, Ishikawa M, Ohkubo S, Yamamoto A, Ouchi A, Sakuragi M, Ito T, Sugiyama O (2001) Laser surface treatment of regenerated cellulose fiber. Compos Interfaces 7(6):497–509 Mizoguchi K, Ishikawa M, Ohkubo S, Yamamoto A, Ouchi A, Sakuragi M, Ito T, Sugiyama O (2001) Laser surface treatment of regenerated cellulose fiber. Compos Interfaces 7(6):497–509
Zurück zum Zitat Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343CrossRef Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343CrossRef
Zurück zum Zitat Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRef Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80(1):155–159 Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80(1):155–159
Zurück zum Zitat Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559CrossRef Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15(2):323–331CrossRef Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15(2):323–331CrossRef
Zurück zum Zitat Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80(1):93–97CrossRef Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80(1):93–97CrossRef
Zurück zum Zitat Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. Part 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001CrossRef Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. Part 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001CrossRef
Zurück zum Zitat Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9):2712–2716CrossRef Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9):2712–2716CrossRef
Zurück zum Zitat Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286CrossRef Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286CrossRef
Zurück zum Zitat Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687CrossRef Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687CrossRef
Zurück zum Zitat Nishiyama S, Funato N, Sawatari A (1993) Analysis of the functional groups formed on the corona-treated cellulose fiber sheet surface by chemical modification in gas-phase ESCA technique. Sen’i Gakkaishi 49(7):357–366CrossRef Nishiyama S, Funato N, Sawatari A (1993) Analysis of the functional groups formed on the corona-treated cellulose fiber sheet surface by chemical modification in gas-phase ESCA technique. Sen’i Gakkaishi 49(7):357–366CrossRef
Zurück zum Zitat Njuguna J, Pielichowski K, Alcock JR (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9(10):835–847CrossRef Njuguna J, Pielichowski K, Alcock JR (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9(10):835–847CrossRef
Zurück zum Zitat Nourbakhsh A, Ashori A (2008) Fundamental studies on wood-plastic composites: effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym Compos 29(5):569CrossRef Nourbakhsh A, Ashori A (2008) Fundamental studies on wood-plastic composites: effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym Compos 29(5):569CrossRef
Zurück zum Zitat Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRef Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRef
Zurück zum Zitat Oliveira Taipina M, Ferrarezi M, Yoshida IVP, Gonçalves Md (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1):217–226CrossRef Oliveira Taipina M, Ferrarezi M, Yoshida IVP, Gonçalves Md (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1):217–226CrossRef
Zurück zum Zitat Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16(1):55–60 Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16(1):55–60
Zurück zum Zitat Page DH (1969) Theory for the tensile strength of paper. Tappi 52(4):674–681 Page DH (1969) Theory for the tensile strength of paper. Tappi 52(4):674–681
Zurück zum Zitat Page DH, El-Hosseiny F, Winkler K (1971) Behaviour of single wood fibres under axial tensile strain. Nature 229:252–253CrossRef Page DH, El-Hosseiny F, Winkler K (1971) Behaviour of single wood fibres under axial tensile strain. Nature 229:252–253CrossRef
Zurück zum Zitat Pan P, Zhu B, Dong T, Serizawa S, Iji M, Inoue Y (2008) Kenaf fiber/poly(e-caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. J Appl Polym Sci 107(6):3512–3519CrossRef Pan P, Zhu B, Dong T, Serizawa S, Iji M, Inoue Y (2008) Kenaf fiber/poly(e-caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. J Appl Polym Sci 107(6):3512–3519CrossRef
Zurück zum Zitat Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill, New York, NY Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill, New York, NY
Zurück zum Zitat Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422–4427CrossRef Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422–4427CrossRef
Zurück zum Zitat Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: Oksman K, Sain M (eds) Cellulose nanocomposites-processing, characterization and properties. American Chemistry Society, Washington DC, p 132CrossRef Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: Oksman K, Sain M (eds) Cellulose nanocomposites-processing, characterization and properties. American Chemistry Society, Washington DC, p 132CrossRef
Zurück zum Zitat Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544CrossRef Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544CrossRef
Zurück zum Zitat Phiriyawirut M, Saenpong P, Chalermboon S, Sooksakoolrut R, Pochanajit N, Vuttikit L, Thongchai A, Supaphol P (2008) Isotactic poly(propylene)/wood sawdust composite: effects of natural weathering, water immersion, and gamma-ray irradiation on mechanical properties. Macromol Symp 264(1):59–66CrossRef Phiriyawirut M, Saenpong P, Chalermboon S, Sooksakoolrut R, Pochanajit N, Vuttikit L, Thongchai A, Supaphol P (2008) Isotactic poly(propylene)/wood sawdust composite: effects of natural weathering, water immersion, and gamma-ray irradiation on mechanical properties. Macromol Symp 264(1):59–66CrossRef
Zurück zum Zitat Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Discrimination of matrix-fibre interactions in all-cellulose nanocomposites. Compos Sci Technol 70(16):2325–2330CrossRef Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Discrimination of matrix-fibre interactions in all-cellulose nanocomposites. Compos Sci Technol 70(16):2325–2330CrossRef
Zurück zum Zitat Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13(8):2528–2536CrossRef Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13(8):2528–2536CrossRef
Zurück zum Zitat Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10(6):1597–1602CrossRef Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10(6):1597–1602CrossRef
Zurück zum Zitat Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467CrossRef Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467CrossRef
Zurück zum Zitat Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72(13):1588–1594CrossRef Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72(13):1588–1594CrossRef
Zurück zum Zitat Quillin DT, Caulfield DF, Koutsky JA (1992) Surface energy compatibilities of cellulose and polypropylene. Mater Res Soc Symp Proc 266:113–126CrossRef Quillin DT, Caulfield DF, Koutsky JA (1992) Surface energy compatibilities of cellulose and polypropylene. Mater Res Soc Symp Proc 266:113–126CrossRef
Zurück zum Zitat Quillin DT, Caufield DF, Koutsky JA (1993) Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. J Appl Polym Sci 50(7):1187–1194CrossRef Quillin DT, Caufield DF, Koutsky JA (1993) Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. J Appl Polym Sci 50(7):1187–1194CrossRef
Zurück zum Zitat Quillin DT, Yin M, Koutsky JA, Caulfield DF (1994) Crystallinity in the polypropylene/cellulose system. II. Crystallization kinetics. J Appl Polym Sci 52(5):605–615CrossRef Quillin DT, Yin M, Koutsky JA, Caulfield DF (1994) Crystallinity in the polypropylene/cellulose system. II. Crystallization kinetics. J Appl Polym Sci 52(5):605–615CrossRef
Zurück zum Zitat Radovanovic B, Markovic G, Radovanovic A (2008) Wood flour as a secondary filler in carbon black filled of styrene butadiene/chlorosulphonated polyethylene rubber blend. Polym Compos 29(6):692–697CrossRef Radovanovic B, Markovic G, Radovanovic A (2008) Wood flour as a secondary filler in carbon black filled of styrene butadiene/chlorosulphonated polyethylene rubber blend. Polym Compos 29(6):692–697CrossRef
Zurück zum Zitat Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164 (discussion 208–113)CrossRef Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164 (discussion 208–113)CrossRef
Zurück zum Zitat Rånby BG (1952) The cellular micelles. Tappi 35:53–58 Rånby BG (1952) The cellular micelles. Tappi 35:53–58
Zurück zum Zitat Ray PK, Chakravarty AC, Bandyopadhyay SB (1976) Fine structure and mechanical properties of jute differently dried after retting. J Appl Polym Sci 20(7):1765–1767CrossRef Ray PK, Chakravarty AC, Bandyopadhyay SB (1976) Fine structure and mechanical properties of jute differently dried after retting. J Appl Polym Sci 20(7):1765–1767CrossRef
Zurück zum Zitat Report (2002) Annual report of the government-industry forum on non-food uses of crops. Department for Environment, Food and Rural Affairs, EU Report (2002) Annual report of the government-industry forum on non-food uses of crops. Department for Environment, Food and Rural Affairs, EU
Zurück zum Zitat Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragon I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 19(1):103–109CrossRef Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragon I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 19(1):103–109CrossRef
Zurück zum Zitat Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef
Zurück zum Zitat Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134CrossRef Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134CrossRef
Zurück zum Zitat Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149 Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149
Zurück zum Zitat Rezaei F, Yunus R, Ibrahim NA, Mahdi ES (2008) Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym Plast Technol Eng 47(4):351–357CrossRef Rezaei F, Yunus R, Ibrahim NA, Mahdi ES (2008) Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym Plast Technol Eng 47(4):351–357CrossRef
Zurück zum Zitat Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134CrossRef Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134CrossRef
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRef
Zurück zum Zitat Ruiz MM, Cavaille JY, Dufresne A, Graillat C, Gerard J-F (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169(1):211–222CrossRef Ruiz MM, Cavaille JY, Dufresne A, Graillat C, Gerard J-F (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169(1):211–222CrossRef
Zurück zum Zitat Sabharwal HS, Denes F, Nielsen L, Young RA (1993) Free-radical formation in jute from argon plasma treatment. J Agric Food Chem 41(11):2202–2207CrossRef Sabharwal HS, Denes F, Nielsen L, Young RA (1993) Free-radical formation in jute from argon plasma treatment. J Agric Food Chem 41(11):2202–2207CrossRef
Zurück zum Zitat Saechtling H (1987) Saechtling international plastics handbook for the technologist, engineer, and user. Carl Hanser Verlag, Munich Saechtling H (1987) Saechtling international plastics handbook for the technologist, engineer, and user. Carl Hanser Verlag, Munich
Zurück zum Zitat Sahoo PK, Sahu GC, Rana PK, Das AK (2005) Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv Polym Technol 24(3):208–214CrossRef Sahoo PK, Sahu GC, Rana PK, Das AK (2005) Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv Polym Technol 24(3):208–214CrossRef
Zurück zum Zitat Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef
Zurück zum Zitat Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253CrossRef Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253CrossRef
Zurück zum Zitat Sakamoto A (2008) Sauce compositions containing stabilizers. JP Patent 2008271879 Sakamoto A (2008) Sauce compositions containing stabilizers. JP Patent 2008271879
Zurück zum Zitat Sakurada I, Nukushina Y (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660CrossRef Sakurada I, Nukushina Y (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004a) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13):4839–4844CrossRef Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004a) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13):4839–4844CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004b) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393CrossRef Samir MASA, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004b) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004c) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157CrossRef Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004c) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005a) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005a) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2005b) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Polim Cienc Tecnol 15(2):109–113CrossRef Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2005b) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Polim Cienc Tecnol 15(2):109–113CrossRef
Zurück zum Zitat Sarkhel G, Choudhury A (2008) Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. J Appl Polym Sci 108(6):3442–3453CrossRef Sarkhel G, Choudhury A (2008) Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. J Appl Polym Sci 108(6):3442–3453CrossRef
Zurück zum Zitat Sawatari A, Nakamura H (1993) Surface characterization of the corona-treated cellulose fiber sheet by chemical modification—ESCA technique. (Part 1). Analysis of the functional groups formed on the corona-treated cellulose fiber sheet surface by means of chemical modification in liquid phase-ESCA technique. Sen’i Gakkaishi 49(6):279–286CrossRef Sawatari A, Nakamura H (1993) Surface characterization of the corona-treated cellulose fiber sheet by chemical modification—ESCA technique. (Part 1). Analysis of the functional groups formed on the corona-treated cellulose fiber sheet surface by means of chemical modification in liquid phase-ESCA technique. Sen’i Gakkaishi 49(6):279–286CrossRef
Zurück zum Zitat Seidel A (ed) (2004) Kirk-Othmer encyclopedia of chemical technology, vol 5, 5th edn. Wiley-Interscience, Hoboken Seidel A (ed) (2004) Kirk-Othmer encyclopedia of chemical technology, vol 5, 5th edn. Wiley-Interscience, Hoboken
Zurück zum Zitat Semsarzadeh MA (1986) Fiber matrix interactions in jute reinforced polyester resin. Polym Compos 7(1):23–25CrossRef Semsarzadeh MA (1986) Fiber matrix interactions in jute reinforced polyester resin. Polym Compos 7(1):23–25CrossRef
Zurück zum Zitat Setua DK, De SK (1984) Short silk fibre reinforced nitrile rubber composites. J Mater Sci 19(3):983–999CrossRef Setua DK, De SK (1984) Short silk fibre reinforced nitrile rubber composites. J Mater Sci 19(3):983–999CrossRef
Zurück zum Zitat Shah J, Brown Jr. RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352 Shah J, Brown Jr. RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352
Zurück zum Zitat Shang W, Huang J, Luo H, Chang P, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190CrossRef Shang W, Huang J, Luo H, Chang P, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190CrossRef
Zurück zum Zitat Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67(9):1753–1763CrossRef Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67(9):1753–1763CrossRef
Zurück zum Zitat Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A 39(5):875–886CrossRef Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A 39(5):875–886CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
Zurück zum Zitat Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68(10–11):2201–2207CrossRef Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68(10–11):2201–2207CrossRef
Zurück zum Zitat Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRef Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRef
Zurück zum Zitat Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011a) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011a) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef
Zurück zum Zitat Spence K, Venditti R, Rojas O, Pawlak J, Hubbe M (2011b) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioRes 6(4):4370–4388 Spence K, Venditti R, Rojas O, Pawlak J, Hubbe M (2011b) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioRes 6(4):4370–4388
Zurück zum Zitat Sretenovic A, Muller U, Gindl W (2006) Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry. Compos A 37(9):1406–1412CrossRef Sretenovic A, Muller U, Gindl W (2006) Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry. Compos A 37(9):1406–1412CrossRef
Zurück zum Zitat Srithep Y, Turng L-S, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19(4):1209–1223CrossRef Srithep Y, Turng L-S, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19(4):1209–1223CrossRef
Zurück zum Zitat Stauffer D (1985) Introduction to percolation theory. Talor and Francis, LondonCrossRef Stauffer D (1985) Introduction to percolation theory. Talor and Francis, LondonCrossRef
Zurück zum Zitat Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef
Zurück zum Zitat Suddell BC, Evans WJ (2003) The increasing use and application of natural fiber composite materials within the automotive industry. In: Seventh international conference on woodfiber-plastic composites, Madison, Wisconsin, USA, pp 7–14 Suddell BC, Evans WJ (2003) The increasing use and application of natural fiber composite materials within the automotive industry. In: Seventh international conference on woodfiber-plastic composites, Madison, Wisconsin, USA, pp 7–14
Zurück zum Zitat Suddell BC, Evans WJ (2005) Natural fiber composites in automotive applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC, USA Suddell BC, Evans WJ (2005) Natural fiber composites in automotive applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC, USA
Zurück zum Zitat Sundar S, Sain M, Oksman K (2011) Thermal characterization and electrical properties of Fe-modified cellulose long fibers and micro crystalline cellulose. J Therm Anal Calorim 104(3):841–847CrossRef Sundar S, Sain M, Oksman K (2011) Thermal characterization and electrical properties of Fe-modified cellulose long fibers and micro crystalline cellulose. J Therm Anal Calorim 104(3):841–847CrossRef
Zurück zum Zitat Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRef
Zurück zum Zitat Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363CrossRef Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363CrossRef
Zurück zum Zitat Tajvidi M (2005) Static and dynamic mechanical properties of a kenaf fiber-wood flour/polypropylene hybrid composite. J Appl Polym Sci 98(2):665–672CrossRef Tajvidi M (2005) Static and dynamic mechanical properties of a kenaf fiber-wood flour/polypropylene hybrid composite. J Appl Polym Sci 98(2):665–672CrossRef
Zurück zum Zitat Takacs E, Wojnarovits L, Borsa J, Foldvary C, Hargittai P, Zold O (1999) Effect of gamma-irradiation on cotton-cellulose. Radiat Phys Chem 55(5–6):663–666CrossRef Takacs E, Wojnarovits L, Borsa J, Foldvary C, Hargittai P, Zold O (1999) Effect of gamma-irradiation on cotton-cellulose. Radiat Phys Chem 55(5–6):663–666CrossRef
Zurück zum Zitat Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibers. Polym Int 47(3):291–294CrossRef Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibers. Polym Int 47(3):291–294CrossRef
Zurück zum Zitat Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012a) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349CrossRef Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012a) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349CrossRef
Zurück zum Zitat Tanpichai S, Sampson WW, Eichhorn SJ (2012b) Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Compos A 43(7):1145–1152CrossRef Tanpichai S, Sampson WW, Eichhorn SJ (2012b) Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Compos A 43(7):1145–1152CrossRef
Zurück zum Zitat Thummanukitcharoen P, Limpanart S, Srikulkit K (2012) Preparation of organosilane treated microcrystalline (SiMCC) and SiMCC/polypropylene composites. J Metals Mater Miner 22(1):13–19 Thummanukitcharoen P, Limpanart S, Srikulkit K (2012) Preparation of organosilane treated microcrystalline (SiMCC) and SiMCC/polypropylene composites. J Metals Mater Miner 22(1):13–19
Zurück zum Zitat Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372CrossRef Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372CrossRef
Zurück zum Zitat Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19(20):1873–1876CrossRef Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19(20):1873–1876CrossRef
Zurück zum Zitat Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38(2):363–376CrossRef Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38(2):363–376CrossRef
Zurück zum Zitat Thygesen A, Daniel G, Lilholt H, Thomsen AB (2005) Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J Nat Fibers 2(4):19–37CrossRef Thygesen A, Daniel G, Lilholt H, Thomsen AB (2005) Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J Nat Fibers 2(4):19–37CrossRef
Zurück zum Zitat Trejo-O’Reilly JA, Cavaille JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Compos 21(1):65–71CrossRef Trejo-O’Reilly JA, Cavaille JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Compos 21(1):65–71CrossRef
Zurück zum Zitat Tsai SW, Halpin JC, Pagano NJ (1968) Composite materials workshop. Technomic Publishing Co., New York Tsai SW, Halpin JC, Pagano NJ (1968) Composite materials workshop. Technomic Publishing Co., New York
Zurück zum Zitat Turbak AF, El-Kafrawy A, Snyder FW Jr, Auerbach AB (1981) Solvent system for celulose. US Patent 4302252 Turbak AF, El-Kafrawy A, Snyder FW Jr, Auerbach AB (1981) Solvent system for celulose. US Patent 4302252
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827
Zurück zum Zitat Uehara T, Sakata I (1990) Effect of corona discharge treatment on cellulose prepared from beechwood. J Appl Polym Sci 41(7–8):1695–1706CrossRef Uehara T, Sakata I (1990) Effect of corona discharge treatment on cellulose prepared from beechwood. J Appl Polym Sci 41(7–8):1695–1706CrossRef
Zurück zum Zitat Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35(1):92–97CrossRef Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35(1):92–97CrossRef
Zurück zum Zitat Urabe K, Yomoda S (1991) A nondestructive testing method of fiber orientation by microwave. Adv Compos Mater 1(3):193–208CrossRef Urabe K, Yomoda S (1991) A nondestructive testing method of fiber orientation by microwave. Adv Compos Mater 1(3):193–208CrossRef
Zurück zum Zitat Vallejos ME, Peresin MS, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20(4):1075–1083CrossRef Vallejos ME, Peresin MS, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20(4):1075–1083CrossRef
Zurück zum Zitat van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8(4):1353–1357CrossRef van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8(4):1353–1357CrossRef
Zurück zum Zitat Vilay V, Mariatti M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68(3–4):631–638CrossRef Vilay V, Mariatti M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68(3–4):631–638CrossRef
Zurück zum Zitat Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83(4):1937–1946CrossRef Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83(4):1937–1946CrossRef
Zurück zum Zitat Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef
Zurück zum Zitat Westerlind B, Larsson A, Rigdahl M (1987) Determination of the degree of adhesion in plasma-treated polyethylene/paper laminates. Int J Adhes Adhes 7(3):141–146CrossRef Westerlind B, Larsson A, Rigdahl M (1987) Determination of the degree of adhesion in plasma-treated polyethylene/paper laminates. Int J Adhes Adhes 7(3):141–146CrossRef
Zurück zum Zitat Whiteside BR, Coates PD, Hine PJ, Duckett RA (2000) Glass fibre orientation within injection moulded automotive pedal simulation and experimental studies. Plast, Rubber Compos 29(1):38–45 Whiteside BR, Coates PD, Hine PJ, Duckett RA (2000) Glass fibre orientation within injection moulded automotive pedal simulation and experimental studies. Plast, Rubber Compos 29(1):38–45
Zurück zum Zitat Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692CrossRef Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692CrossRef
Zurück zum Zitat Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86CrossRef Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86CrossRef
Zurück zum Zitat Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22(31):15732–15739CrossRef Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22(31):15732–15739CrossRef
Zurück zum Zitat Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145CrossRef Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145CrossRef
Zurück zum Zitat Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70(16):2319–2324CrossRef Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70(16):2319–2324CrossRef
Zurück zum Zitat Yang H-S, Gardner DJ, Nader JW (2011) Dispersion evaluation of microcrystalline cellulose/cellulose nanofibril-filled polypropylene composites using thermogravimetric analysis. J Therm Anal Calorim 103(3):1007–1015CrossRef Yang H-S, Gardner DJ, Nader JW (2011) Dispersion evaluation of microcrystalline cellulose/cellulose nanofibril-filled polypropylene composites using thermogravimetric analysis. J Therm Anal Calorim 103(3):1007–1015CrossRef
Zurück zum Zitat Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22(42):22467–22480CrossRef Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22(42):22467–22480CrossRef
Zurück zum Zitat Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20(1):227–237CrossRef Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20(1):227–237CrossRef
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRef
Zurück zum Zitat Young Christopher R, Koleng John J, McGinity James W (2002) Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm 242(1–2):87–92CrossRef Young Christopher R, Koleng John J, McGinity James W (2002) Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm 242(1–2):87–92CrossRef
Zurück zum Zitat Yousefi H, Faezipour M, Nishino T, Shakeri A, Ebrahimi G (2011a) All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polym J 43(6):559–564CrossRef Yousefi H, Faezipour M, Nishino T, Shakeri A, Ebrahimi G (2011a) All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polym J 43(6):559–564CrossRef
Zurück zum Zitat Yousefi H, Nishino T, Faezipour M, Ebrahimi G, Shakeri A (2011b) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12(11):4080–4085CrossRef Yousefi H, Nishino T, Faezipour M, Ebrahimi G, Shakeri A (2011b) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12(11):4080–4085CrossRef
Zurück zum Zitat Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3):696–700CrossRef Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3):696–700CrossRef
Zurück zum Zitat Yuan Q, Wu D, Gotama J, Bateman S (2008) Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. J Thermoplast Compos Mater 21(3):195–208CrossRef Yuan Q, Wu D, Gotama J, Bateman S (2008) Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. J Thermoplast Compos Mater 21(3):195–208CrossRef
Zurück zum Zitat Zarate CN, Aranguren MI, Reboredo MM (2008) Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J Appl Polym Sci 107(5):2977–2985CrossRef Zarate CN, Aranguren MI, Reboredo MM (2008) Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J Appl Polym Sci 107(5):2977–2985CrossRef
Zurück zum Zitat Zeronian SH (1991) The mechanical properties of cotton fibers. J Appl Polym Sci: Appl Polym Symp 47:445–461CrossRef Zeronian SH (1991) The mechanical properties of cotton fibers. J Appl Polym Sci: Appl Polym Symp 47:445–461CrossRef
Zurück zum Zitat Zeronian SH, Kawabata H, Alger KW (1990) Factors affecting the tensile properties of nonmercerized and mercerized cotton fibers. Text Res J 60(3):179–183CrossRef Zeronian SH, Kawabata H, Alger KW (1990) Factors affecting the tensile properties of nonmercerized and mercerized cotton fibers. Text Res J 60(3):179–183CrossRef
Zurück zum Zitat Zhang X, Shen J, Yang H, Lin Z, Tan S (2011) Mechanical properties, morphology, thermal performance, crystallization behavior, and kinetics of PP/microcrystal cellulose composites compatibilized by two different compatibilizers. J Thermoplast Compos Mater 24(6):735–754CrossRef Zhang X, Shen J, Yang H, Lin Z, Tan S (2011) Mechanical properties, morphology, thermal performance, crystallization behavior, and kinetics of PP/microcrystal cellulose composites compatibilized by two different compatibilizers. J Thermoplast Compos Mater 24(6):735–754CrossRef
Zurück zum Zitat Zhao Q, Yam RM, Zhang B, Yang Y, Cheng X, Li RY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16(2):217–226CrossRef Zhao Q, Yam RM, Zhang B, Yang Y, Cheng X, Li RY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16(2):217–226CrossRef
Zurück zum Zitat Zhou Y, Pervin F, Rangari VK, Jeelani S (2006) Fabrication and evaluation of carbon nanofiber filled carbon/epoxy composite. Mater Sci Eng, A 426(1–2):221–228 Zhou Y, Pervin F, Rangari VK, Jeelani S (2006) Fabrication and evaluation of carbon nanofiber filled carbon/epoxy composite. Mater Sci Eng, A 426(1–2):221–228
Zurück zum Zitat Zhou C, Chu R, Wu R, Wu Q (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625CrossRef Zhou C, Chu R, Wu R, Wu Q (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625CrossRef
Zurück zum Zitat Zhou C, Wu Q, Yue Y, Zhang Q (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116–123CrossRef Zhou C, Wu Q, Yue Y, Zhang Q (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116–123CrossRef
Zurück zum Zitat Zimmerman JM, Losure NS (1998) Mechanical properties of kenaf bast fiber reinforced epoxy matrix composite panels. J Adv Mater 30(2):32–38 Zimmerman JM, Losure NS (1998) Mechanical properties of kenaf bast fiber reinforced epoxy matrix composite panels. J Adv Mater 30(2):32–38
Metadaten
Titel
Cellulose reinforced polymer composites and nanocomposites: a critical review
verfasst von
Chuanwei Miao
Wadood Y. Hamad
Publikationsdatum
01.10.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0007-3

Weitere Artikel der Ausgabe 5/2013

Cellulose 5/2013 Zur Ausgabe