Skip to main content
Erschienen in: Cellulose 1/2014

01.02.2014 | Original Paper

Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis

verfasst von: Yanjun Tang, Shujie Yang, Nan Zhang, Junhua Zhang

Erschienen in: Cellulose | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocrystalline cellulose (NCC) was extracted from microcrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis process. NCC samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size distribution (PSD) analysis, Fourier-transformed infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and rheological measurement. It was found that NCC yield reached 40.4 % under the optimum process of low-intensity ultrasonic-assisted sulfuric acid hydrolysis, while it was only 33.0 % in the absence of ultrasonic treatment. Furthermore, the results showed that the two NCC samples obtained from ultrasonic-assisted hydrolysis and conventional hydrolysis were very similar in morphology, both exhibiting rod-like structures with widths and lengths of 10–20 and 50–150 nm, respectively. XRD result revealed that the NCC sample from ultrasonic-assisted hydrolysis contained a small amount of cellulose II and possessed a Segal Crystallinity Index of 90.38 % and a crystallite size of 58.99 Å, higher than those of the NCC sample from conventional hydrolysis. Moreover, PSD analysis demonstrated that the former exhibited a smaller value in average particle size than the latter. In addition, rheological measurements showed that the NCC suspensions from the ultrasonic-assisted process exhibited a lower viscosity over the range of shear rate from 0.1 to 100 s−1 in comparison with that prepared in the absence of ultrasonic treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmadi F, McLoughlin IV, Chauhan S, Ter-Haar G (2012) Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol 108(3):119–138CrossRef Ahmadi F, McLoughlin IV, Chauhan S, Ter-Haar G (2012) Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol 108(3):119–138CrossRef
Zurück zum Zitat Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455–465CrossRef Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455–465CrossRef
Zurück zum Zitat Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRef
Zurück zum Zitat Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRef
Zurück zum Zitat Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRef
Zurück zum Zitat Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88(2):713–718CrossRef Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88(2):713–718CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRef Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRef
Zurück zum Zitat Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157CrossRef Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157CrossRef
Zurück zum Zitat Cintas P, Luche J (1999) Green chemistry. The sonochemical approach. Green Chem 1(3):115–125CrossRef Cintas P, Luche J (1999) Green chemistry. The sonochemical approach. Green Chem 1(3):115–125CrossRef
Zurück zum Zitat de Campos A, Correa AC, Cannella D, de Morais Teixeira E, Marconcini JM, Dufresne A, Mattoso LH, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20(3):1491–1500CrossRef de Campos A, Correa AC, Cannella D, de Morais Teixeira E, Marconcini JM, Dufresne A, Mattoso LH, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20(3):1491–1500CrossRef
Zurück zum Zitat de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima LeiteF, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRef de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima LeiteF, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRef
Zurück zum Zitat Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRef Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRef
Zurück zum Zitat Driemeier C, Calligaris GA (2010) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44(1):184–192CrossRef Driemeier C, Calligaris GA (2010) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44(1):184–192CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef
Zurück zum Zitat Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86(3):1281–1290CrossRef Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86(3):1281–1290CrossRef
Zurück zum Zitat Fan J, Li Y (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88(4):1184–1188CrossRef Fan J, Li Y (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88(4):1184–1188CrossRef
Zurück zum Zitat Fatehi P, Liu X, Ni Y, Xiao H (2010) Interaction of cationic modified poly vinyl alcohol with high yield pulp. Cellulose 17(5):1021–1031CrossRef Fatehi P, Liu X, Ni Y, Xiao H (2010) Interaction of cationic modified poly vinyl alcohol with high yield pulp. Cellulose 17(5):1021–1031CrossRef
Zurück zum Zitat Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100(7):2259–2264CrossRef Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100(7):2259–2264CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588CrossRef
Zurück zum Zitat Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402 Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402
Zurück zum Zitat Hamada H, Bousfield DW (2010) Nano-fibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets. In: TAPPI 11th advanced coating fundamentals symposium, Munich, TAPPI, Atlanta, GA, pp 7–16 Hamada H, Bousfield DW (2010) Nano-fibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets. In: TAPPI 11th advanced coating fundamentals symposium, Munich, TAPPI, Atlanta, GA, pp 7–16
Zurück zum Zitat Hashaikeh R, Abushammala H (2011) Acid mediated networked cellulose: preparation and characterization. Carbohydr Polym 83(3):1088–1094CrossRef Hashaikeh R, Abushammala H (2011) Acid mediated networked cellulose: preparation and characterization. Carbohydr Polym 83(3):1088–1094CrossRef
Zurück zum Zitat Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Poly J 43(8):3434–3441CrossRef Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Poly J 43(8):3434–3441CrossRef
Zurück zum Zitat Ishida O, Kim D, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11(3–4):475–480CrossRef Ishida O, Kim D, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11(3–4):475–480CrossRef
Zurück zum Zitat Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18(2):451–459CrossRef Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18(2):451–459CrossRef
Zurück zum Zitat Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99CrossRef Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99CrossRef
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRef
Zurück zum Zitat Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290CrossRef Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290CrossRef
Zurück zum Zitat Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRef Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRef
Zurück zum Zitat Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485CrossRef Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485CrossRef
Zurück zum Zitat Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84(1):316–322CrossRef Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84(1):316–322CrossRef
Zurück zum Zitat Liu C, Xiao B, Dauta A, Peng G, Liu S, Hu Z (2009) Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Bioresour Technol 100(24):6217–6222 Liu C, Xiao B, Dauta A, Peng G, Liu S, Hu Z (2009) Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Bioresour Technol 100(24):6217–6222
Zurück zum Zitat Lu P, Hsieh Y (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336CrossRef Lu P, Hsieh Y (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336CrossRef
Zurück zum Zitat Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50(1):121–128CrossRef Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50(1):121–128CrossRef
Zurück zum Zitat Morais JPS, Rosa MDF, Nasciment LD, Nascimento DMD, Alexandre LC (2012) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235CrossRef Morais JPS, Rosa MDF, Nasciment LD, Nascimento DMD, Alexandre LC (2012) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235CrossRef
Zurück zum Zitat Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336CrossRef Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336CrossRef
Zurück zum Zitat Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71(10):1342–1347CrossRef Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71(10):1342–1347CrossRef
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef
Zurück zum Zitat Pirani S, Hashaikeh R (2012) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93(1):357–363CrossRef Pirani S, Hashaikeh R (2012) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93(1):357–363CrossRef
Zurück zum Zitat Pourbafarani S, Mozaffari M, Amighian J (2013) Investigation of phase formation and magnetic properties of Mn ferrite nanoparticles prepared via low-power ultrasonic assisted co-precipitation method. J Supercond Nov Magn 26(3):675–678CrossRef Pourbafarani S, Mozaffari M, Amighian J (2013) Investigation of phase formation and magnetic properties of Mn ferrite nanoparticles prepared via low-power ultrasonic assisted co-precipitation method. J Supercond Nov Magn 26(3):675–678CrossRef
Zurück zum Zitat Qian L, Guan Y, Ziaee Z, He B, Zheng A, Xiao H (2009) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 16(2):309–317CrossRef Qian L, Guan Y, Ziaee Z, He B, Zheng A, Xiao H (2009) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 16(2):309–317CrossRef
Zurück zum Zitat Qua EH, Hornsby PR, Sharma H, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46(18):6029–6045CrossRef Qua EH, Hornsby PR, Sharma H, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46(18):6029–6045CrossRef
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRef
Zurück zum Zitat Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83(1):122–129CrossRef Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83(1):122–129CrossRef
Zurück zum Zitat Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89(1):146–151CrossRef Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89(1):146–151CrossRef
Zurück zum Zitat Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100 Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100
Zurück zum Zitat Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106CrossRef Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106CrossRef
Zurück zum Zitat Tamada Y (2003) Sulfation of silk fibroin by sulfuric acid and anticoagulant activity. J App Poly Sci 87(14):2377–2382CrossRef Tamada Y (2003) Sulfation of silk fibroin by sulfuric acid and anticoagulant activity. J App Poly Sci 87(14):2377–2382CrossRef
Zurück zum Zitat Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2012) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresour Technol 127:100–105CrossRef Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2012) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresour Technol 127:100–105CrossRef
Zurück zum Zitat Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzingr Ber 89:118–131 Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzingr Ber 89:118–131
Zurück zum Zitat Tischer PCF, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11(5):1217–1224CrossRef Tischer PCF, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11(5):1217–1224CrossRef
Zurück zum Zitat Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88CrossRef Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88CrossRef
Zurück zum Zitat Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19(3):821–829CrossRef Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19(3):821–829CrossRef
Zurück zum Zitat Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRef Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRef
Zurück zum Zitat Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef
Zurück zum Zitat Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24(1):5–8CrossRef Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24(1):5–8CrossRef
Zurück zum Zitat Yang Q, Pan X, Huang F, Li K (2011) Synthesis and characterization of cellulose fibers grafted with hyperbranched poly (3-methyl-3-oxetanemethanol). Cellulose 18(6):1611–1621CrossRef Yang Q, Pan X, Huang F, Li K (2011) Synthesis and characterization of cellulose fibers grafted with hyperbranched poly (3-methyl-3-oxetanemethanol). Cellulose 18(6):1611–1621CrossRef
Zurück zum Zitat Zaman M, Liu H, Xiao H, Chibante F, Ni Y (2012a) Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydr Polym 91(2):560–567CrossRef Zaman M, Liu H, Xiao H, Chibante F, Ni Y (2012a) Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydr Polym 91(2):560–567CrossRef
Zurück zum Zitat Zaman M, Xiao H, Chibante F, Ni Y (2012b) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89(1):163–170CrossRef Zaman M, Xiao H, Chibante F, Ni Y (2012b) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89(1):163–170CrossRef
Metadaten
Titel
Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis
verfasst von
Yanjun Tang
Shujie Yang
Nan Zhang
Junhua Zhang
Publikationsdatum
01.02.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0158-2

Weitere Artikel der Ausgabe 1/2014

Cellulose 1/2014 Zur Ausgabe