Skip to main content
Erschienen in: Cellulose 3/2013

01.06.2013 | Original Paper

Cellulose loading and water sorption value as important parameters for the enzymatic hydrolysis of cellulose

verfasst von: Thomas Stauner, Igor B. Silva, Omar A. El Seoud, Elisabete Frollini, Denise F. S. Petri

Erschienen in: Cellulose | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The enzymatic hydrolysis of cotton raw cellulose (RC) samples, sieved RC samples through meshes <100 (CS1), 100–200 (C12), 200–400 (C24), mercerized RC samples (M-C), freeze-dried RC (RC-FD) samples, microcrystalline cellulose Avicel, bacterial cellulose (BC), raw sisal pulp and mercerized sisal pulp (S-M) was performed at cellulose-to-cellulase mass ratios of 1,000:1, 699:1, 400:1, 100:1 and 10:1. The index of crystallinity and water sorption values were quantified for all samples. The morphological features were analyzed by means of scanning electron microscopy (SEM). For cellulose-to-cellulase mass ratio of 100:1 and 10:1, the maximum hydrolysis extents of cellulose samples after 24 h reaction could not be correlated with their physical characteristics. However, hydrolyses of samples with large water sorption values were faster than those with lower water sorption values. The hydrolysis efficiency decreased when the cellulose-to-cellulase mass ratio was greater than 400:1; under this condition a remarkable dependence of the hydrolysis yield on the type of cellulosic sample was observed. The water sorption ability could be directly correlated with the hydrolysis extent, except for RC-FD and BC samples, which presented the lowest values. In the former, freeze-drying has led to pore collapse, with concomitant reduction of the amount of adsorbed water. For the latter sample, the densely packed structure made the water sorption slower than in all other samples. Despite of this fact, the presence of nanofibrils on the surface of BC (as detected by SEM) improved the enzyme adsorption, indicating that analysis by complementary techniques should be performed in order to predict the enzymatic hydrolysis efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Appl Biochem Biotechnol 160:280–297CrossRef Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Appl Biochem Biotechnol 160:280–297CrossRef
Zurück zum Zitat Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3–16CrossRef Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3–16CrossRef
Zurück zum Zitat Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRef Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRef
Zurück zum Zitat Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of x-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471CrossRef Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of x-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471CrossRef
Zurück zum Zitat Bansal P, Vowell BJ, Hall M, Realff MJ, Lee JH, Bommarius AS (2012) Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 107:243–250CrossRef Bansal P, Vowell BJ, Hall M, Realff MJ, Lee JH, Bommarius AS (2012) Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 107:243–250CrossRef
Zurück zum Zitat Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Appl Biochem Biotechnol 112:173–184CrossRef Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Appl Biochem Biotechnol 112:173–184CrossRef
Zurück zum Zitat Brown RM Jr (1996) The biosynthesis of cellulose. Macromol Sci Pure Appl Chem A33:1345–1373 Brown RM Jr (1996) The biosynthesis of cellulose. Macromol Sci Pure Appl Chem A33:1345–1373
Zurück zum Zitat Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRef Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRef
Zurück zum Zitat Chandra RP, Ewanick SM, Chung PA, Au-Yeung K, Del Rio L, Mabee W, Saddler JN (2009) Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnol Lett 31:1217–1222CrossRef Chandra RP, Ewanick SM, Chung PA, Au-Yeung K, Del Rio L, Mabee W, Saddler JN (2009) Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnol Lett 31:1217–1222CrossRef
Zurück zum Zitat Ciolacu D, Gorgieva S, Tampu D, Kokol V (2011) Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose 18:1527–1541CrossRef Ciolacu D, Gorgieva S, Tampu D, Kokol V (2011) Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose 18:1527–1541CrossRef
Zurück zum Zitat Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. In: Russell GE (ed) Biotechnology and genetic engineering reviews, vol 3. Interscience, Newcastle-upon-Tyne, pp 37–109 Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. In: Russell GE (ed) Biotechnology and genetic engineering reviews, vol 3. Interscience, Newcastle-upon-Tyne, pp 37–109
Zurück zum Zitat Driemeier C, Mendes FM, Oliveira MM (2012) Dynamic vapor sorption and thermoporometry to probe water in celluloses. Cellulose 19:1051–1063CrossRef Driemeier C, Mendes FM, Oliveira MM (2012) Dynamic vapor sorption and thermoporometry to probe water in celluloses. Cellulose 19:1051–1063CrossRef
Zurück zum Zitat El Seoud O, Ludmila CF, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 18:371–392CrossRef El Seoud O, Ludmila CF, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 18:371–392CrossRef
Zurück zum Zitat Fan LT, Lee YH, Beardmore DR (1981) Mechanism of enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzyme hydrolysis. Biotechnol Bioeng 23:419–424CrossRef Fan LT, Lee YH, Beardmore DR (1981) Mechanism of enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzyme hydrolysis. Biotechnol Bioeng 23:419–424CrossRef
Zurück zum Zitat Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol Chem Phys 209:1240–1254CrossRef Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol Chem Phys 209:1240–1254CrossRef
Zurück zum Zitat Galet L, Patry S, Dodds J (2010) Determination of the wettability of powders by the Washburn capillary rise method with bed preparation by a centrifugal packing technique. J. Colloid Interf Sci 346:470–475CrossRef Galet L, Patry S, Dodds J (2010) Determination of the wettability of powders by the Washburn capillary rise method with bed preparation by a centrifugal packing technique. J. Colloid Interf Sci 346:470–475CrossRef
Zurück zum Zitat Griggs AJ, Stickel JJ, Lischeske JJ (2012) A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBH. Biotechnol Bioeng 109:665–675CrossRef Griggs AJ, Stickel JJ, Lischeske JJ (2012) A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBH. Biotechnol Bioeng 109:665–675CrossRef
Zurück zum Zitat Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef
Zurück zum Zitat Hatakeyama T, Nakamura K, Hatakeyama H (2000) Vaporization of bound water associated with cellulose fibers. Thermochim Acta 352–353:233–239CrossRef Hatakeyama T, Nakamura K, Hatakeyama H (2000) Vaporization of bound water associated with cellulose fibers. Thermochim Acta 352–353:233–239CrossRef
Zurück zum Zitat Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122CrossRef Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122CrossRef
Zurück zum Zitat Ko CH, Chen FJ, Lee JJ, Tzou DLM (2011) Effects of fiber physical and chemical characteristics on the interaction between endoglucanase and eucalypt fibers. Cellulose 18:1043–1054CrossRef Ko CH, Chen FJ, Lee JJ, Tzou DLM (2011) Effects of fiber physical and chemical characteristics on the interaction between endoglucanase and eucalypt fibers. Cellulose 18:1043–1054CrossRef
Zurück zum Zitat Kobayashi K, Kimura S, Kim UJ, Tokuyasu K, Wada M (2012) Enzymatic hydrolysis of cellulose hydrates. Cellulose 19:967–974CrossRef Kobayashi K, Kimura S, Kim UJ, Tokuyasu K, Wada M (2012) Enzymatic hydrolysis of cellulose hydrates. Cellulose 19:967–974CrossRef
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
Zurück zum Zitat Lacerda TM, de Paula MP, Zambon M, Frollini E (2012) Saccharification of Brazilian sisal pulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysis products. Cellulose 19:351–362CrossRef Lacerda TM, de Paula MP, Zambon M, Frollini E (2012) Saccharification of Brazilian sisal pulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysis products. Cellulose 19:351–362CrossRef
Zurück zum Zitat Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107:37–51CrossRef Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107:37–51CrossRef
Zurück zum Zitat Levine SE, Fox JM, Clark DS, Blanch HW (2011) A mechanistic model for rational design of optimal cellulase mixtures. Biotechnol Bioeng 108:2561–2570CrossRef Levine SE, Fox JM, Clark DS, Blanch HW (2011) A mechanistic model for rational design of optimal cellulase mixtures. Biotechnol Bioeng 108:2561–2570CrossRef
Zurück zum Zitat Luo XL, Zhu JY, Gleisner R, Zhan HY (2011) Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose 18:1055–1062CrossRef Luo XL, Zhu JY, Gleisner R, Zhan HY (2011) Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose 18:1055–1062CrossRef
Zurück zum Zitat Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef
Zurück zum Zitat Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816CrossRef Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816CrossRef
Zurück zum Zitat Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84:524–532CrossRef Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84:524–532CrossRef
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428
Zurück zum Zitat Mizutani C, Inagaki H, Bertoniere NR (1999) Water absorbency of never-dried cotton fibers. Cellulose 6:167–176CrossRef Mizutani C, Inagaki H, Bertoniere NR (1999) Water absorbency of never-dried cotton fibers. Cellulose 6:167–176CrossRef
Zurück zum Zitat Ogeda TL, Silva IB, Fidale LC, El Seoud OA, Petri DFS (2012) Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase. J Biotechnol 157:246–252CrossRef Ogeda TL, Silva IB, Fidale LC, El Seoud OA, Petri DFS (2012) Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase. J Biotechnol 157:246–252CrossRef
Zurück zum Zitat Persin Z, Stana-Kleinschek K, Kreze T (2002) Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry. Croat Chem Acta 75:271–280 Persin Z, Stana-Kleinschek K, Kreze T (2002) Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry. Croat Chem Acta 75:271–280
Zurück zum Zitat Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydrate Res 341:591–597CrossRef Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydrate Res 341:591–597CrossRef
Zurück zum Zitat Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222CrossRef Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222CrossRef
Zurück zum Zitat Ramos LA, Morgado DL, El Seoud OA, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392CrossRef Ramos LA, Morgado DL, El Seoud OA, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392CrossRef
Zurück zum Zitat Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18:759–773CrossRef Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18:759–773CrossRef
Zurück zum Zitat Sattler W, Esterbauer H, Glatter O, Steiner W (2004) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng 33:121–1234 Sattler W, Esterbauer H, Glatter O, Steiner W (2004) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng 33:121–1234
Zurück zum Zitat Sewalt VJH, Beauchemin KA, Rode LM (1997a) Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of Alfalfa and grasses following selective solvent delignification. Bioresour Technol 61:199–206CrossRef Sewalt VJH, Beauchemin KA, Rode LM (1997a) Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of Alfalfa and grasses following selective solvent delignification. Bioresour Technol 61:199–206CrossRef
Zurück zum Zitat Sewalt VJH, Glasser WG, Beauchemin KA (1997b) Lignin impact on fiber degradation. 3. reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45:1823–1828CrossRef Sewalt VJH, Glasser WG, Beauchemin KA (1997b) Lignin impact on fiber degradation. 3. reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45:1823–1828CrossRef
Zurück zum Zitat Strømme M, Mihranyan A, Ek R, Niklasson GA (2003) Fractal dimension of cellulose powders analyzed by multilayer BET adsorption of water and nitrogen. J Phys Chem B 107:14378–14382CrossRef Strømme M, Mihranyan A, Ek R, Niklasson GA (2003) Fractal dimension of cellulose powders analyzed by multilayer BET adsorption of water and nitrogen. J Phys Chem B 107:14378–14382CrossRef
Zurück zum Zitat Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microbial Technol 28:835–844CrossRef Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microbial Technol 28:835–844CrossRef
Zurück zum Zitat Topalovic T, Nierstrasz VA, Bautista VL, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A.: physicochem. Eng Aspects 296:76–85CrossRef Topalovic T, Nierstrasz VA, Bautista VL, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A.: physicochem. Eng Aspects 296:76–85CrossRef
Zurück zum Zitat Vanderghem C, Jacquet N, Danthine S, Blecker C, Paquot M (2012) Effect of physicochemical characteristics of cellulosic substrates on enzymatic hydrolysis by means of a multi-stage process for cellobiose production. Appl Biochem Biotechnol 166:1423–1432CrossRef Vanderghem C, Jacquet N, Danthine S, Blecker C, Paquot M (2012) Effect of physicochemical characteristics of cellulosic substrates on enzymatic hydrolysis by means of a multi-stage process for cellobiose production. Appl Biochem Biotechnol 166:1423–1432CrossRef
Zurück zum Zitat Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149CrossRef Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149CrossRef
Zurück zum Zitat Weast RC (1983). Handbook of physical chemistry, 64th ed. CRC Press Inc Weast RC (1983). Handbook of physical chemistry, 64th ed. CRC Press Inc
Zurück zum Zitat Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE (2005) Hydrolysis of cellulose and hemicellulose. In: Dumitriu S (ed) Polysaccharides: Structural diversity and functional versatility. Dekker, New York, pp 995–1034 Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE (2005) Hydrolysis of cellulose and hemicellulose. In: Dumitriu S (ed) Polysaccharides: Structural diversity and functional versatility. Dekker, New York, pp 995–1034
Zurück zum Zitat Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 157:113–116 Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 157:113–116
Zurück zum Zitat Yu X, Atalla RH (1998) A staining technique for evaluating the pore structure variations of microcrystalline cellulose powders. Powder Technol 98:135–138CrossRef Yu X, Atalla RH (1998) A staining technique for evaluating the pore structure variations of microcrystalline cellulose powders. Powder Technol 98:135–138CrossRef
Zurück zum Zitat Yu Z, Jameel H, Chang H, Philips R, Park S (2012) Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnol Bioeng 109:1131–1139CrossRef Yu Z, Jameel H, Chang H, Philips R, Park S (2012) Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnol Bioeng 109:1131–1139CrossRef
Zurück zum Zitat Yui T, Ogawa K (2005) X-Ray diffraction study of polysaccharides. In: Dumitriu S (ed) Polysaccharides: Structural diversity and functional versatility. Dekker, New York, pp 99–122 Yui T, Ogawa K (2005) X-Ray diffraction study of polysaccharides. In: Dumitriu S (ed) Polysaccharides: Structural diversity and functional versatility. Dekker, New York, pp 99–122
Zurück zum Zitat Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRef Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRef
Zurück zum Zitat Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515CrossRef Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515CrossRef
Metadaten
Titel
Cellulose loading and water sorption value as important parameters for the enzymatic hydrolysis of cellulose
verfasst von
Thomas Stauner
Igor B. Silva
Omar A. El Seoud
Elisabete Frollini
Denise F. S. Petri
Publikationsdatum
01.06.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-9904-8

Weitere Artikel der Ausgabe 3/2013

Cellulose 3/2013 Zur Ausgabe