Skip to main content
Log in

Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocomposite films consisting of cellulose nanofibrils (CNFs), magnesium hydroxide nanoplatelets (MHNPs) and regenerated cellulose were prepared via simple blending and casting processes. The CNFs were obtained from bamboo pulp by ultrasonic treatment coupled with high shear homogenization. The morphology, structure and properties of the nanocomposite films were comprehensively analyzed using various characterization techniques, including the scanning electron microscope, digital microscope, limiting oxygen index (LOI), micro-scale combustion calorimetry, antibacterial assays, tensile testing, etc. When the MHNP content was optimized to 30 wt%, the nanocomposite film exhibited the best overall properties. The LOI of the composite film increased from 20.0 (0 wt% MHNPs) to 32.7 (30 wt% MHNPs), making it a flame-retardant material in air. In addition, the film containing 30 wt% MHNPs showed excellent antibacterial activity. However, the increase in MHNP content would result in gradual deterioration of the films’ mechanical properties. However, the incorporation of CNFs could significantly suppress this trend. The present work provided a promising pathway for manufacturing multifunctional and high-performance cellulose-based composite films, which were potentially useful for a variety of packaging materials, especially in the biomedical and food packaging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S (2012) X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab 97:2378–2387

    Article  CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, John M, Narine SS, Thomas S, Anandjiwala R (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20:417–427

    Article  CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Alavi MA, Morsali A (2010) Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason Sonochem 17:441–446

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  CAS  Google Scholar 

  • Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10

    Article  CAS  Google Scholar 

  • Cao H, Zheng H, Yin J, Lu Y, Wu S, Wu X, Li B (2010) Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects. J Phys Chem C 114:17362–17368

    Article  CAS  Google Scholar 

  • Cervin NT, Andersson L, Ng JBS, Olin P, Bergström L, Wagberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Part C Polym Rev 30:405–440

    Article  Google Scholar 

  • Dong C, Cairney J, Sun Q, Maddan OL, He G, Deng YJ (2010) Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. Nanopart Res 12:2101–2109

    Article  CAS  Google Scholar 

  • Dupont AL (2003) Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón S (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Fu M, Qu B (2004) Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym Degrad Stab 85:633–639

    Article  CAS  Google Scholar 

  • Gindl-Altmutter W, Keckes J, Plackner J, Liebner F, Englund K, Laborie MP (2012) All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrix composites. Compos Sci Technol 72:1304–1309

    Article  CAS  Google Scholar 

  • Gui H, Zhang X, Liu Y, Dong W, Wang Q, Gao J, Song Z, Lai J, Qiao J (2007) Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites. Compos Sci Technol 67:974–980

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev-Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaff old for tissue engineering. Biomacromolecules 15:618–627

    Article  CAS  Google Scholar 

  • Henrich VE (1976) Thermal faceting of (110) and (111) surfaces of MgO. Surf Sci 57:385–392

    Article  CAS  Google Scholar 

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Article  CAS  Google Scholar 

  • Kim SJ, Dwiatmoko AA, Choi JW, Suha YW, Suh DJ, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 10:8273–8279

    Article  Google Scholar 

  • Knight CC, Ip F, Zeng C, Zhang C, Wang B (2013) A highly efficient fire retardant nanomaterial based on carbon nanotubes and magnesium hydroxide. Fire Mater 37:91–97

    Article  CAS  Google Scholar 

  • Lam C, Lau K, Cheung H, Ling H (2005) Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett 59:1369–1372

    Article  CAS  Google Scholar 

  • Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois Ph (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R: Rep 23:100–125

    Article  Google Scholar 

  • Li Y, Sui M, Ding Y, Zhang G, Zhuang J, Wang C (2000) Preparation of Mg (OH)2 nanorods. Adv Mater 12:818–821

    Article  CAS  Google Scholar 

  • Li YC, Mannen S, Morgan AB, Chang SC, Yang YH, Condon B, Grunlan JC (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric advanced materials 23:3926–3931

    CAS  Google Scholar 

  • Liu Y, Wang X, Qi K, Xin JH (2008) Functionalization of cotton with carbon nanotubes. J Mater Chem 18:3454–3460

    Article  CAS  Google Scholar 

  • Lv J, Qiu L, Qu B (2004) Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene–vinyl acetate blends. Nanotechnology 15:1576–1581

    Article  Google Scholar 

  • Mishra S, Sonawane SH, Singh RP, Bendale A, Patil K (2004) Effect of nano-Mg(OH)2 on the mechanical and flame-retarding properties of polypropylene composites. J Appl Polym Sci 94:116–122

    Article  CAS  Google Scholar 

  • Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5:1137–1142

    Article  CAS  Google Scholar 

  • Parikh DV, Nam S, He Q (2012) Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimeter. J Fire Sci 30:187–200

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602

    Article  CAS  Google Scholar 

  • Qiu L, Xie R, Ding P, Qu B (2003) Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA. Compos Struct 62:391–395

    Article  Google Scholar 

  • Sain M, Park SH, Suhara F, Law S (2004) Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym Degrad Stab 83:363–367

    Article  CAS  Google Scholar 

  • Schartel B, Potschke P, Knoll U, Abdel-Goad M (2005) Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J 41:1061–1070

    Article  CAS  Google Scholar 

  • Shen L, Chen Y, Li P (2012) Synergistic catalysis effects of lanthanum oxide in polypropylene/magnesium hydroxide flame retarded system. Compos A Appl Sci Manuf 43:1177–1186

    Article  CAS  Google Scholar 

  • Song G, Ma S, Tang G, Wang X (2010) Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles. Coll Surf A: Physicochem Eng Asp 364:99–104

    Article  CAS  Google Scholar 

  • Soykeabkaewa N, Arimotob N, Nishinob T, Peijsa T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207

    Article  Google Scholar 

  • Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038

    Article  CAS  Google Scholar 

  • Tang H, Zhou X, Liu X (2013) Effect of magnesium hydroxide on the flame retardant properties of unsaturated polyester resin. Proced Eng 52:336–341

    Article  CAS  Google Scholar 

  • Tonoli GHD, Rodrigues Filho UP, Savastano H Jr, Bras J, Belgacem MN, Rocco Lahr FA (2009) Cellulose modified fibres in cement based composites. Compos A Appl Sci Manuf 40:2046–2053

    Article  Google Scholar 

  • Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Tonoli GHD, Belgacem MN, Siqueira G, Bras J, Savastano H Jr, Rocco Lahr FA (2013) Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem Concr Compos 37:68–75

    Article  CAS  Google Scholar 

  • Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928

    Article  CAS  Google Scholar 

  • Wu J, Yan H, Zhang X, Wei L, Liu X, Xu B (2008) Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions. J Coll Interface Sci 324:167–171

    Article  CAS  Google Scholar 

  • Yan C, Xue D, Zou L, Yan X, Wang W (2005) Preparation of magnesium hydroxide nanoflowers. J Cryst Growth 282:448–454

    Article  CAS  Google Scholar 

  • Yang CQ, He Q (2011) Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. J Anal Appl Pyrolysis 91:125–133

    Article  CAS  Google Scholar 

  • Yang H, Yang CQ, He Q (2009) The bonding of a hydroxy-functional organophosphorus oligomer to nylon fabric using the formaldehyde derivatives of urea and melamine as the bonding agents. Polym Degrad Stab 94:1023–1031

    Article  CAS  Google Scholar 

  • Yang CQ, He Q, Lyon RE, Hu Y (2010a) Investigation of the flammability of different textile fabrics using micro-scale comb ustion calorimetry. Polym Degrad Stab 95:108–115

    Article  CAS  Google Scholar 

  • Yang Z, Zhou C, Cai J, Yan H, Huang X, Yang H, Cheng R (2010b) Effects of macromolecular compatibilizers containing epoxy groups on the properties of linear low-density polyethylene/magnesium hydroxide composites. Ind Eng Chem Res 49:6291–6301

    Article  CAS  Google Scholar 

  • Yang Z, Wang X, Lei D, Fei B, Xin JH (2012) A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 97:2467–2472

    Article  CAS  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

  • Zhang W, Hu Z, Zhang Y, Lu C, Deng Y (2013) Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: the physical and flammability properties. Compos B Eng 51:276–281

    Article  CAS  Google Scholar 

  • Zhao J, Zhang W, Zhang X, Zhang X, Lu C, Deng Y (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97:695–702

    Article  CAS  Google Scholar 

  • Zhu H, Zhu Q, Li J, Tao K, Xue L, Yan Q (2011) Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym Degrad Stab 96:183–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Natural Science Foundation of China (51303112 and 51203105) and Young Scholar Fund of Sichuan University (2012SCU11074) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, X., Tu, R. et al. Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose 21, 1859–1872 (2014). https://doi.org/10.1007/s10570-014-0255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0255-x

Keywords

Navigation