Skip to main content
Log in

Regioselective synthesis of 6-amino- and 6-amido-6-deoxypullulans

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Hydrophobically modified polysaccharides that contain amine and amide groups possess valuable features for drug delivery and other applications. These chemical groups are known to play a fundamental role in the biological activity of important polysaccharides. Pullulan is known for its non-toxicity and biocompatibility, therefore, we have applied the versatile Staudinger reaction for the synthesis of regioselectively substituted pullulan derivatives containing amine or amide groups with promise for biomedical applications. The synthesis began with the regioselective bromination of pullulan at C-6 with N-bromosuccinimide and triphenylphosphine, providing 6-bromo-6-deoxy-pullulan, which is soluble in a range of organic solvents and therefore is a dynamic intermediate for the synthesis of other pullulan derivatives. Azide displacement of bromide from 6-bromo-6-deoxy-pullulan esters yielded the corresponding 6-azido-6-deoxy-pullulan esters. Staudinger reduction of these azides efficiently and chemoselectively afforded the corresponding amino- or amidopullulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aiba S (1992) Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 14(4):225–228. doi:10.1016/s0141-8130(05)80032-7

    Article  CAS  Google Scholar 

  • Akiyoshi K, Yamaguchi S, Sunamoto J (1991) Self-Aggregates of hydrophobic polysaccharide derivatives. Chem Lett 7:1263–1266

    Article  Google Scholar 

  • Bauer R (1938) Physiology of Dematium pullulans de Bary. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2(98):133–167

    Google Scholar 

  • Bender H, Lehmann J, Wallenfels K (1959) Pullulan, an extracellular glucan from Pullularia pullulans. Biochim Biophys Acta 36:309–316

    Article  CAS  Google Scholar 

  • Bernier B (1958) The production of polysaccharides by fungi active in the decomposition of wood and forest litter. Can J Microbiol 4:195–204

    Article  CAS  Google Scholar 

  • Berth G, Dautzenberg H (2002) The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydr Polym 47(1):39–51. doi:10.1016/s0144-8617(00)00343-x

    Article  CAS  Google Scholar 

  • Berth G, Dautzenberg H, Peter MG (1998) Physico-chemical characterization of chitosans varying in degree of acetylation. Carbohydr Polym 36(2–3):205–216. doi:10.1016/s0144-8617(98)00029-0

    Article  CAS  Google Scholar 

  • Blanco JLJ, Fernandez JMG, Gadelle A, Defaye J (1997) A mild one-step selective conversion of primary hydroxyl groups into azides in mono- and oligo-saccharides. Carbohydr Res 303(3):367–372

    Article  Google Scholar 

  • Chiou SH, Wu WT, Huang YY, Chung TW (2001) Effects of the characteristics of chitosan on controlling drug release of chitosan coated PLLA microspheres. J Microencapsul 18(5):613–625

    Article  CAS  Google Scholar 

  • Cimecioglu AL, Ball DH, Kaplan DL, Huang SH (1994) Preparation of amylose derivatives selectively modified at C-6. 6-amino-6-deoxyamylose. Macromolecules 27(11):2917–2922. doi:10.1021/ma00089a004

    Google Scholar 

  • Cimecioglu AL, Ball DH, Huang SH, Kaplan DL (1997) A direct regioselective route to 6-azido-6-deoxy polysaccharides under mild and homogeneous conditions. Macromolecules 30:155–156

    Google Scholar 

  • Constantin M, Fundueanu G, Cortesi R, Esposito E, Nastruzzi C (2003) Aminated polysaccharide microspheres as DNA delivery systems. Drug Deliv 10(3):139–149. doi:10.1080/10717540390215537

    Article  CAS  Google Scholar 

  • Dicke RE (2004) A straight way to regioselectively functionalized polysaccharide esters. Cellulose 11(2):255–263

    Article  CAS  Google Scholar 

  • Fox SC, Edgar KJ (2011) Synthesis of regioselectively brominated cellulose esters and 6-cyano-6-deoxycellulose esters. Cellulose 18(5):1305–1314. doi:10.1007/s10570-011-9574-3

    Article  CAS  Google Scholar 

  • Fox SC, Edgar KJ (2012) Staudinger reduction chemistry of cellulose: synthesis of selectively O-acylated 6-amino-6-deoxy-cellulose. Biomacromolecules 13(4):992–1001. doi:10.1021/bm2017004

    Article  CAS  Google Scholar 

  • Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose—a review. Biomacromolecules 12:1956–1972. doi:10.1021/bm200260d

    Article  CAS  Google Scholar 

  • Furuhata K, Koganei K, Chang H-S, Aoki N, Sakamoto M (1992a) Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide triphenylphosphine in lithium bromide—N,N-dimethylacetamide. Carbohydr Res 230:165–177

    Article  CAS  Google Scholar 

  • Furuhata KI, Koganei K, Chang HS, Aoki N, Sakamoto M (1992b) Dissolution of cellulose in lithium bromide organic-solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide triphenylphosphine in lithium bromide N,N-dimethylacetamide. Carbohydr Res 230(1):165–177

    Article  CAS  Google Scholar 

  • Garcia J, Urpi F, Vilarrasa J (1984) New synthetic tricks—triphenylphosphine-mediated amide formation from carboxylic acids and azides. Tetrahedron Lett 25(42):4841–4844. doi:10.1016/s0040-4039(01)81534-3

    Article  CAS  Google Scholar 

  • Gupta KC, Jabrail FH (2006) Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr Polym 66(1):43–54. doi:10.1016/j.carbpol.2006.02.019

    Article  CAS  Google Scholar 

  • Hirakura T, Nomura Y, Aoyama Y, Akiyoshi K (2004) Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules 5(5):1804–1809. doi:10.1021/Bm049860o

    Article  CAS  Google Scholar 

  • Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002) Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Contr Rel 83(2):287–302. doi:10.1016/S0168-3659(02)00201-8

    Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150. doi:10.1016/j.biotechadv.2009.11.001

    Article  CAS  Google Scholar 

  • Jo J, Yamamoto M, Matsumoto K, Nakamura T, Tabata Y (2006) Liver targeting of plasmid DNA with a cationized pullulan for tumor suppression. J Nanosci Nanotechnol 6(9–10):2853–2859. doi:10.1166/Jnn.2006.466

    Article  CAS  Google Scholar 

  • Jung SW, Jeong YI, Kim SH (2003) Characterization of hydrophobized pullulan with various hydrophobicities. Int J Pharm 254(2):109–121. doi:10.1016/S0378-5173(03)00006-1

    Article  CAS  Google Scholar 

  • Jung SW, Jeong YI, Kim YH, Kim SH (2004) Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch Pharm Res 27(5):562–569

    Article  CAS  Google Scholar 

  • Kiang T, Wen H, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25(22):5293–5301. doi:10.1016/j.biomaterials.2003.12.036

    Article  CAS  Google Scholar 

  • Kofuji K, Qian CJ, Nishimura M, Sugiyama I, Murata Y, Kawashima S (2005) Relationship between physicochemical characteristics and functional properties of chitosan. Eur Polym J 41(11):2784–2791. doi:10.1016/j.eurpolymj.2005.04.041

    Article  CAS  Google Scholar 

  • Koryagin AS, Erofeeva EA, Yakimovich NO, Aleksandrova EA, Smirnova LA, Mal’kov AV (2006) Analysis of antioxidant properties of chitosan and its oligomers. Bull Exp Biol Med 142(4):461–463. doi:10.1007/s10517-006-0392-9

    Article  CAS  Google Scholar 

  • Kurita K, Kaji Y, Mori T, Nishiyama Y (2000) Enzymatic degradation of beta-chitin: susceptibility and the influence of deacetylation. Carbohydr Polym 42(1):19–21. doi:10.1016/s0144-8617(99)00127-7

    Article  CAS  Google Scholar 

  • Lavertu M, Methot S, Tran-Khanh N, Buschmann MD (2006) High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27(27):4815–4824. doi:10.1016/j.biomaterials.2006.04.029

    Article  CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62(5–6):468–473. doi:10.1007/s00253-003-1386-4

    Article  CAS  Google Scholar 

  • Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, De Yao K (2004) A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials 25(18):3973–3981. doi:10.1016/j.biomaterials.2003.10.080

    Article  CAS  Google Scholar 

  • Minagawa T, Okamura Y, Shigemasa Y, Minami S, Okamoto Y (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67(4):640–644. doi:10.1016/j.carbpol.2006.07.007

    Article  CAS  Google Scholar 

  • Mocanu G, Constantin M, Carpov A (1996) Chemical reactions on polysaccharides: 5. Reaction of mesyl chloride with pullulan. Angew Makromol Chem 241:1–10

    Article  CAS  Google Scholar 

  • Morganti P, Morganti G (2008) Chitin nanofibrils for advanced cosmeceuticals. Clin Dermatol 26(4):334–340. doi:10.1016/j.clindermatol.2008.01.003

    Article  Google Scholar 

  • Nakagawa Y, Murai T, Hasegawa C, Hirata M, Tsuchiya T, Yagami T, Haishima Y (2003) Endotoxin contamination in wound dressings made of natural biomaterials. J Biomed Mater Res B 66B(1):347–355. doi:10.1002/Jbm.B.10020

    Article  CAS  Google Scholar 

  • Neville AC, Parry DAD, Woodhead-Galloway J (1976) The chitin crystallite in arthropod cuticle. J Cell Sci 21(1):73–82

    Google Scholar 

  • O’Neil IA, Thompson S, Murray CL, Kalindjian SB (1998) DPPE: A convenient replacement for triphynylphosphine in the staudinger and Mitsunobu reactions. Tetrahedron Lett 39(42):7787–7790. doi:10.1016/S0040-4039(98)01702-X

    Article  Google Scholar 

  • Rekha MR, Sharma CP (2007) Pullulan as a promissing biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 20:116–121

    Google Scholar 

  • Rosenthal R, Günzel D, Finger C, Krug SM, Richter JF, Schulzke J-D, Fromm M, Amasheh S (2012) The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials 33(9):2791–2800. doi:10.1016/j.biomaterials.2011.12.034

    Article  CAS  Google Scholar 

  • Saxon E, Armstrong JI, Bertozzi CR (2000) A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2(14):2141–2143. doi:10.1021/ol006054v

    Article  CAS  Google Scholar 

  • Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 4(3):641–648. doi:10.1021/bm025724c

    Article  CAS  Google Scholar 

  • Schipper NGM, Varum KM, Artursson P (1996) Chitosans as absorption enhancers for poorly absorbable drugs: 1. Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res 13(11):1686–1692. doi:10.1023/a:1016444808000

    Article  CAS  Google Scholar 

  • Shey J, Holtman KM, Wong RY, Gregorski KS, Klamczynski AP, Orts WJ, Glenn GM, Imam SH (2006) The azidation of starch. Carbohydr Polym 65(4):529–534. doi:10.1016/j.carbpol.2006.02.009

    Article  CAS  Google Scholar 

  • Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr Res 339(3):447–460. doi:10.1016/j.carres.2003.10.034

    Article  CAS  Google Scholar 

  • Teramoto N, Shibata M (2006) Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydr Polym 63(4):476–481. doi:10.1016/j.carbpol.2005.10.008

    Article  CAS  Google Scholar 

  • Tigli RS, Karakecili A, Gumusderelioglu M (2007) In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci Mater Med 18(9):1665–1674. doi:10.1007/s10856-007-3066

    Article  Google Scholar 

  • Yamaoka T, Tabata Y, Yoshito I (1993) Body distribution profile of polysaccharides after intravenous administration. Drug Deliv 1(1):75–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hayashibara Company for their kind donation of pullulan. We thank the Macromolecules and Interfaces Institute (MII) at Virginia Tech for providing a doctoral fellowship to JP and the Institute for Critical Technologies and Applied Science (ICTAS) at Virginia Tech for facilities support. We also thank the National Science Foundation for their help in financing this project through Grant Numbers DMR-0804501 and DMR-1308276. We are grateful for the help of Michelle Mahoney in the optimization of the bromination reaction and also to Mark Flynn and Sue Mecham for running and help interpreting the SEC data. For the SEC used in this work, the authors greatly acknowledge financial support by the National Science Foundation under the Grant Number DMR-1126534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Edgar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.M., Edgar, K.J. Regioselective synthesis of 6-amino- and 6-amido-6-deoxypullulans. Cellulose 21, 2379–2396 (2014). https://doi.org/10.1007/s10570-014-0259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0259-6

Keywords

Navigation