Skip to main content
Log in

Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A graft-polymerization process with atomized lauryl methacrylate as monomer is used to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics. The polymers synthesized in the process can form nanoscale hierarchical structures on the cotton surface, and the surface morphology can be controlled by choosing a suitable solvent or by varying the feeding quantity of the monomer mist stream. After applying the surface modification to cotton fabrics, an asymmetrically superhydrophobic surface is achieved without any additional nanosized particles, and the solvent damages on the cotton fabrics are controllable at a very low level. Surface characterization reveals that the modified side of the cotton fabric has laundering-durable and mechanically stable superhydrophobicity with a water contact angle of more than 150°, whereas the opposite inherits the hydrophilic property of pristine cotton fabric. The modified cotton fabrics are found to have medium-level water-absorbing ability between pristine cotton and PET fabrics, as well as good vapor transmissibility similar to pristine cotton fabric. These properties are of great significance in textile and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An QF, Xu W, Hao LF, Fu YS, Huang LX (2013) Fabrication of superhydrophobic fabric coating using microphase-separated dodecafluoroheptyl-containing polyacrylate and nanosilica. J Appl Polym Sci 128(5):3050–3056

    Article  CAS  Google Scholar 

  • Andou Y, Jeong JM, Hiki S, Nishida H, Endo T (2009a) Design of nanocomposites by vapor-phase assisted surface polymerization. Macromolecules 42(3):768–772

    Article  CAS  Google Scholar 

  • Andou Y, Jeong JM, Nishida H, Endo T (2009b) Simple procedure for polystyrene-based nanocomposite preparation by vapor-phase-assisted surface polymerization. Macromolecules 42(20):7930–7935

    Article  CAS  Google Scholar 

  • Ates ES, Unalan HE (2012) Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films 520(14):4658–4661

    Article  CAS  Google Scholar 

  • Chen F, Zhang D, Yang Q, Yong J, Du G, Si J, Yun F, Hou X (2013) Bioinspired wetting surface via laser microfabrication. ACS Appl Mater Inter 5(15):6777–6792

    Article  CAS  Google Scholar 

  • Conder JM, Hoke RA, Wolf WD, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42(4):995–1003

    Article  CAS  Google Scholar 

  • Deng B, Cai R, Yu Y, Jiang HQ, Wang CL, Li JA, Li LF, Yu M, Li JY, Xie LD, Huang Q, Fan CH (2010) Laundering durability of superhydrophobic cotton fabric. Adv Mater 22(48):5473–5477

    Article  CAS  Google Scholar 

  • Eadie L, Ghosh TK (2011) Biomimicry in textiles: past, present and potential. An overview. J R Soc Interface 8(59):761–775

    Article  Google Scholar 

  • Fouda MMG, Abdel-Halim ES, Al-Deyab SS (2013) Antibacterial modification of cotton using nanotechnology. Carbohyd Polym 92(2):943–954

    Article  CAS  Google Scholar 

  • Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    Article  CAS  Google Scholar 

  • Hao LF, An QF, Xu W (2012) Facile fabrication of superhydrophobic cotton fabric from stearyl methacrylate modified polysiloxane/silica nanocomposite. Fiber Polym 13(9):1145–1153

    Article  CAS  Google Scholar 

  • Hebeish A, Mehta P (1968) Cerium-initiated grafting of acrylonitrile onto cellulosic materials. J Appl Polym Sci 12(7):1625–1647

    Article  CAS  Google Scholar 

  • Ivanova NA, Philipchenko AB (2012) Superhydrophobic chitosan-based coatings for textile processing. Appl Surf Sci 263:783–787

    Article  CAS  Google Scholar 

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24(10):5585–5590

    Article  CAS  Google Scholar 

  • Liang J, Zhou Y, Jiang GH, Wang RJ, Wang XH, Hu RB, Xi XG (2013) Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation. J Text I 104(3):305–311

    Article  CAS  Google Scholar 

  • Liu KS, Jiang L (2012) Bio-inspired self-cleaning surfaces. Annu Rev Mater Res 42:231–263

    Article  CAS  Google Scholar 

  • Liu XD, Nishi N, Tokura S, Sakairi N (2001) Chitosan coated cotton fiber: preparation and physical properties. Carbohyd Polym 44(3):233–238

    Article  CAS  Google Scholar 

  • Liu Y, Tang J, Wang R, Lu H, Li L, Kong Y, Qi K, Xin JH (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17(11):1071–1078

    Article  CAS  Google Scholar 

  • Liu XJ, Liang YM, Zhou F, Liu WM (2012a) Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter 8(7):2070–2086

    Article  Google Scholar 

  • Liu YY, Xin JH, Choi CH (2012b) Cotton fabrics with single-faced superhydrophobicity. Langmuir 28(50):17426–17434

    Article  CAS  Google Scholar 

  • Liu KS, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58(4):503–564

    Article  CAS  Google Scholar 

  • Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29(7):635–698

    Article  CAS  Google Scholar 

  • Ma Y, Cao X, Feng X, Ma Y, Zou H (2007) Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90. Polymer 48(26):7455–7460

    Article  CAS  Google Scholar 

  • Ma WS, Zhang DQ, Duan Y, Wang H (2013) Highly monodisperse polysilsesquioxane spheres: synthesis and application in cotton fabrics. J Colloid Interface Sci 392:194–200

    Article  CAS  Google Scholar 

  • Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519

    Article  CAS  Google Scholar 

  • Marmur A (2008) From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 24(14):7573–7579

    Article  CAS  Google Scholar 

  • Miao H, Bao FF, Cheng LL, Shi WF (2010) Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via gamma-ray-induced grafting. Radiat Phys Chem 79(7):786–790

    Article  CAS  Google Scholar 

  • Ogihara H, Xie J, Okagaki J, Saji T (2012) Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28(10):4605–4608

    Article  CAS  Google Scholar 

  • Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2013) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20(1):355–364

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  • Shahid ul I, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52(15):5245–5260

    Article  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013) Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection. Text Res J 83(10):993–1004

    Article  Google Scholar 

  • Shi YL, Wang YS, Feng XJ, Yue GR, Yang W (2012) Fabrication of superhydrophobicity on cotton fabric by sol-gel. Appl Surf Sci 258(20):8134–8138

    Article  CAS  Google Scholar 

  • Shin B, Lee K-R, Moon M-W, Kim H-Y (2012) Extreme water repellency of nanostructured low-surface-energy non-woven fabrics. Soft Matter 8(6):1817–1823

    Article  CAS  Google Scholar 

  • Shirtcliffe NJ, McHale G, Newton MI (2011) The superhydrophobicity of polymer surfaces: recent developments. J Polym Sci, Part B: Polym Phys 49(17):1203–1217

    Article  CAS  Google Scholar 

  • Sparks BJ, Hoff EFT, Xiong L, Goetz JT, Patton DL (2013) Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization. ACS Appl Mater Inter 5(5):1811–1817

    Article  CAS  Google Scholar 

  • Suja F, Pramanik B, Zain S (2009) Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Sci Technol 60(6):1533–1544

    Article  CAS  Google Scholar 

  • Wan SJ, Wang L, Xu XJ, Zhao CH, Liu XD (2014) Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface. Soft Matter 10(6):903–910

    Article  CAS  Google Scholar 

  • Wang XL, Hu HY, Ye Q, Gao TT, Zhou F, Xue QJ (2012) Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites. J Mater Chem 22(19):9624–9631

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  • Wolfs M, Darmanin T, Guittard F (2013) Superhydrophobic fibrous polymers. Polym Rev 53(3):460–505. doi:10.1080/15583724.2013.808666

    Article  CAS  Google Scholar 

  • Xu LH, Zhuang W, Xu B, Cai ZS (2012) Superhydrophobic cotton fabrics prepared by one-step water-based sol–gel coating. J Text I 103(3):311–319

    CAS  Google Scholar 

  • Xue ZX, Liu MJ, Jiang L (2012) Recent developments in polymeric superoleophobic surfaces. J Polym Sci, Part B: Polym Phys 50(17):1209–1224

    Article  CAS  Google Scholar 

  • Yang R, Asatekin A, Gleason KK (2012) Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter 8(1):31–43

    Article  CAS  Google Scholar 

  • Yao X, Song YL, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23(6):719–734

    Article  CAS  Google Scholar 

  • Yin YJ, Wang CX, Shen QK, Zhang GF, Galib CMA (2013) Surface deposition on cellulose substrate via cationic SiO2/TiO2 hybrid sol for transfer printing using disperse dye. Ind Eng Chem Res 52(31):10656–10663

    Article  CAS  Google Scholar 

  • Yoon H, Buckley A (1984) Improved comfort polyester part I: transport properties and thermal comfort of polyester/cotton blend fabrics. Text Res J 54(5):289–298

    Article  CAS  Google Scholar 

  • Yu M, Wang ZQ, Liu HZ, Xie SY, Wu JX, Jiang HQ, Zhang JY, Li LF, Li JY (2013) Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized. ACS Appl Mater Inter 5(9):3697–3703

    Article  CAS  Google Scholar 

  • Zhang M, Wang CY (2013) Fabrication of cotton fabric with superhydrophobicity and flame retardancy. Carbohyd Polym 96(2):396–402

    Article  CAS  Google Scholar 

  • Zhang M, Wang SL, Wang CY, Li J (2012a) A facile method to fabricate superhydrophobic cotton fabrics. Appl Surf Sci 261:561–566

    Article  CAS  Google Scholar 

  • Zhang YL, Xia H, Kim E, Sun HB (2012b) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8(44):11217–11231

    Article  CAS  Google Scholar 

  • Zhang GW, Hu JW, Liu GJ, Zou HL, Tu YY, Li F, Hu SY, Luo HS (2013a) Bi-functional random copolymers for one-pot fabrication of superamphiphobic particulate coatings. J Mater Chem A 1(20):6226–6237

    Article  CAS  Google Scholar 

  • Zhang M, Wang CY, Wang SL, Li J (2013b) Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route. Carbohyd Polym 97(1):59–64

    Article  CAS  Google Scholar 

  • Zhang XX, Wang L, Levanen E (2013c) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3(30):12003–12020

    Article  CAS  Google Scholar 

  • Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013a) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Inter 5(15):7208–7214

    Article  CAS  Google Scholar 

  • Zhou X, Zhang Z, Xu X, Men X, Zhu X (2013b) Fabrication of super-repellent cotton textiles with rapid reversible wettability switching of diverse liquids. Appl Surf Sci 276:571–577

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Zhejiang Province (LY12E03007), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry (1101603-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xi, G.H., Wan, S.J. et al. Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21, 2983–2994 (2014). https://doi.org/10.1007/s10570-014-0275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0275-6

Keywords

Navigation