Skip to main content
Log in

Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) synthesized by Acetobacter xylinum has been a promising candidate for medical applications. Modifying BC to possess the properties needed for specific applications has been reported. In this study, BCs functionalized by organosilanes were hypothesized to improve the attachment and spreading of normal human dermal fibroblast (NHDF). The BC gels obtained from biosynthesis were dried by either ambient-air drying or freeze drying. The surfaces of those dried BCs were chemically modified by grafting methyl terminated octadecyltrichlorosilane (OTS) or amine terminated 3-aminopropyltriethoxysilane (APTES) to expectedly increase hydrophobic or electrostatic interactions with NHDF cells, respectively. NHDF cells improved their attachment and spreading on the majority of APTES-modified BCs (~70–80 % of area coverage by cells) with more rapid growth (~2.6–2.8× after incubations from 24 to 48 h) than on tissue culture polystyrene (~2×); while the inverse results (<5 % of area coverage and stationary growth) were observed on the OTS-modified BCs. For organosilane modified BCs, the drying method had no effect on in vitro cell attachment/spreading behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Salah AB, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98:974–984

    Article  CAS  Google Scholar 

  • Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res A 92:9–17

    Article  CAS  Google Scholar 

  • Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681

    Article  CAS  Google Scholar 

  • Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082

    Article  CAS  Google Scholar 

  • Arisaka Y, Kobayashi J, Yamato M, Akiyama Y, Okano T (2013) Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials 34:4214–4222

    Article  CAS  Google Scholar 

  • Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  • Barazzouk S, Daneault C (2012) Amino acid and peptide immobilization on oxidized nanocellulose: spectroscopic characterization. Nanomaterials 2:187–205

    Article  CAS  Google Scholar 

  • Baugh L, Vogel V (2004) Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. J Biomed Mater Res A 69:525–534

    Article  Google Scholar 

  • Belgacem MN, Salon-Brochier MC, Krouit M, Bras J (2010) Recent advances in surface chemical modification of cellulose fibres. J Adhes Sci Technol 25:661–684

    Article  Google Scholar 

  • Bel-Hassen R, Boufi S, Salon MCB, Abdelmouleh M, Belgacem MN (2008) Adsorption of silane onto cellulose fibers. II. The effect of pH on silane hydrolysis, condensation, and adsorption behavior. J Appl Polym Sci 108:1958–1968

    Article  CAS  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  • Brochier Salon MC, Belgacem MN (2010) Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group. Colloids Surf Physicochem Eng Asp 366:147–154

    Article  CAS  Google Scholar 

  • Brochier Salon MC, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A (2005) Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J Colloid Interface Sci 289:249–261

    Article  Google Scholar 

  • Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Article  CAS  Google Scholar 

  • Chaudhury MK (1996) Interfacial interaction between low-energy surfaces. Mater Sci Eng R 16:97–159

    Article  Google Scholar 

  • Chiang CH, Ishida H, Koenig JL (1980) The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci 74:396–404

    Article  CAS  Google Scholar 

  • Curran JM, Chen R, Hunt JA (2005) Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26:7057–7067

    Article  CAS  Google Scholar 

  • Curtis ASG (1964) The mechanism of adhesion of cells to glass: a study by interference reflection microscopy. J Cell Biol 20:199–215

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  Google Scholar 

  • Faucheux N, Schweiss R, Lützow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730

    Article  CAS  Google Scholar 

  • Fontana J et al (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264

    Article  Google Scholar 

  • Green H (1977) Terminal differentiation of cultured human epidermal cells. Cell 11:405–416

    Article  CAS  Google Scholar 

  • Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE (1996) Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208

    Article  CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Article  Google Scholar 

  • Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1:270–280

    Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Izzard CS, Lochner LR (1976) Cell to substrate contacts in living fibroblasts. An interference reflexion study with an evaluation of the technique. J Cell Sci 21:129–159

    CAS  Google Scholar 

  • Jewett S, Zemlyanov D, Ivanisevic A (2011) Adsorption of mixed peptide/thiol adlayers on InAs: assessment of different functionalization strategies using X-ray photoelectron spectroscopy. J Phys Chem C 115:14244–14252

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  CAS  Google Scholar 

  • Johansson L-S, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 144–145:92–95

    Article  Google Scholar 

  • Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotech Eng Med 1:011006–011012

    Article  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lee JH, Lee JW, Khang G, Lee HB (1997) Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18:351–358

    Article  CAS  Google Scholar 

  • Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608

    Article  CAS  Google Scholar 

  • Maria Chong AS, Zhao XS, Kustedjo AT, Qiao SZ (2004) Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. Microporous Mesoporous Mater 72:33–42

    Article  Google Scholar 

  • McClary KB, Ugarova T, Grainger DW (2000) Modulating fibroblast adhesion, spreading, and proliferation using self- assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res 50:428–439

    Article  CAS  Google Scholar 

  • Norde W, Lyklema J (1991) Why proteins prefer interfaces. J Biomater Sci Polym Ed 2:183–202

    Article  CAS  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  • Pertile RAN, Andrade FK, Alves C Jr, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 82:692–698

    Article  CAS  Google Scholar 

  • Ratner BD (1993) Plasma deposition for biomedical applications: a brief review. J Biomater Sci Polym Ed 4:3–11

    Article  Google Scholar 

  • Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  CAS  Google Scholar 

  • Rodriguez GA, Ryckman JD, Jiao Y, Weiss SM (2014) A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor. Biosens Bioelectron 53:486–493

    Article  CAS  Google Scholar 

  • Roy P, Petroll WM, Cavanagh HD, Chuong CJ, Jester JV (1997) Anin VitroForce Measurement Assay to Study the Early Mechanical Interaction between Corneal Fibroblasts and Collagen Matrix. Exp Cell Res 232:106–117

    Article  CAS  Google Scholar 

  • Ruoslahti E, Reed JC (1994) Anchorage dependence, integrins, and apoptosis. Cell 77:477–478

    Article  CAS  Google Scholar 

  • Salon MCB, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn Reson Chem 45:473–483

    Article  CAS  Google Scholar 

  • Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  • Singhvi R, Stephanopoulos G, Wang DIC (1994) Effects of substratum morphology on cell physiology. Biotechnol Bioeng 43:764–771

    Article  CAS  Google Scholar 

  • Soekarno A, Lom B, Hockberger PE (1993) Pathfinding by neuroblastoma cells in culture is directed by preferential adhesion to positively charged surfaces. Neuroimage 1:129–144

    Article  CAS  Google Scholar 

  • Stephen Caravajal G, Leyden DE, Quinting GR, Maciel GE (1988) Structural characterization of (3-aminopropyl)triethoxysilane-modified silicas by silicon-29 and carbon-13 nuclear magnetic resonance. Anal Chem 60:1776–1786

    Article  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  Google Scholar 

  • Taokaew S, Phisalaphong M, Zhang Newby BM (2014) In vitro behaviors of rat mesenchymal stem cells on bacterial celluloses with different moduli. Mater Sci Eng C 38:263–271

    Article  CAS  Google Scholar 

  • Tonoli GHD, Belgacem MN, Siqueira G, Bras J, Savastano H Jr, Rocco Lahr FA (2013) Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem Concr Compos 37:68–75

    Article  CAS  Google Scholar 

  • Toworfe GK, Bhattacharyya S, Composto RJ, Adams CS, Shapiro IM, Ducheyne P (2009) Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. J Tissues Eng Regen Med 3:26–36

    Article  CAS  Google Scholar 

  • Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    Article  CAS  Google Scholar 

  • Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41:422–430

    Article  CAS  Google Scholar 

  • Weisbecker CS, Merritt MV, Whitesides GM (1996) Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12:3763–3772

    Article  CAS  Google Scholar 

  • Yang J, Bei J, Wang S (2002) Improving cell affinity of poly (d, l-lactide) film modified by anhydrous ammonia plasma treatment. Polym Adv Technol 13:220–226

    Article  CAS  Google Scholar 

  • Żenkiewicz M (2007) Comparative study on the surface free energy of a solid calculated by different methods. Polym Test 26:14–19

    Article  Google Scholar 

  • Zhao XS, Lu GQ, Whittaker AK, Millar GJ, Zhu HY (1997) Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. J Phys Chem B 101:6525–6531

    Article  CAS  Google Scholar 

  • Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Royal Golden Jubilee Ph.D. program from the Thailand Research Fund and the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for Project RES560530044-AM and Postdoctoral Fellowship; as well as the National Institutes of Health, the National Institute of General Medical Sciences under award number 1R15GM097626-01A1 (to BMZN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-min Zhang Newby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taokaew, S., Phisalaphong, M. & Newby, Bm.Z. Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22, 2311–2324 (2015). https://doi.org/10.1007/s10570-015-0651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0651-x

Keywords

Navigation