Skip to main content
Erschienen in: Cellulose 1/2016

18.11.2015 | Review Paper

Enhancement of the fermentation process and properties of bacterial cellulose: a review

verfasst von: Cristina Campano, Ana Balea, Angeles Blanco, Carlos Negro

Erschienen in: Cellulose | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose produced by bacteria (BC) has attracted increasing interest in view of its superior properties with respect to nanofibrillar structure, high purity and biocompatibility. Despite the intensive research, industrial production of BC has been limited, due to the low productivity, and the high cost of raw materials. This paper reviews the new approaches tried recently to get BC production feasible at large scale as the reduction in the quality of raw materials, the use of by-products and the optimization of the culture method. In addition, the new trends of enhancing specific properties of BC by varying culture conditions or by using additives have been reviewed. Thus, the paper presents how to obtain and enhance a desired property of BC for a specific use. This new approach will help researchers to develop new ideas in this field which will favour the commercialization of products made with BC and their industrial application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Casarica A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12:968–975CrossRef Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Casarica A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12:968–975CrossRef
Zurück zum Zitat Al-Gelawi MH, Hameed ND, Jasim HM (2012) Isolation, identification and the role of plasmid of cellulose producing Gluconacetobacter xylinus. J Plant Mol Biol Biotechnol 3:16–20 Al-Gelawi MH, Hameed ND, Jasim HM (2012) Isolation, identification and the role of plasmid of cellulose producing Gluconacetobacter xylinus. J Plant Mol Biol Biotechnol 3:16–20
Zurück zum Zitat Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226CrossRef Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226CrossRef
Zurück zum Zitat Amin M, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd Polym 88:465–473CrossRef Amin M, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd Polym 88:465–473CrossRef
Zurück zum Zitat Ausmees N, Jonsson H, Hoglund S, Ljunggren H, Lindberg M (1999) Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145:1253–1262CrossRef Ausmees N, Jonsson H, Hoglund S, Ljunggren H, Lindberg M (1999) Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145:1253–1262CrossRef
Zurück zum Zitat Aydin YA, Aksoy ND (2009) Isolation of cellulose producing bacteria from wastes of vinegar fermentation. WCECS 2009: World congress on engineering and computer science, vols I and II. Int Assoc Engineers-Iaeng, Hong Kong Aydin YA, Aksoy ND (2009) Isolation of cellulose producing bacteria from wastes of vinegar fermentation. WCECS 2009: World congress on engineering and computer science, vols I and II. Int Assoc Engineers-Iaeng, Hong Kong
Zurück zum Zitat Aydin YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075CrossRef Aydin YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075CrossRef
Zurück zum Zitat Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Progr 20:1366–1371CrossRef Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Progr 20:1366–1371CrossRef
Zurück zum Zitat Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol 67:45–51CrossRef Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol 67:45–51CrossRef
Zurück zum Zitat Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 97:33–38CrossRef Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 97:33–38CrossRef
Zurück zum Zitat Barnhart DM, Su SC, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of caulobacter, regulates Cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79:7188–7202CrossRef Barnhart DM, Su SC, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of caulobacter, regulates Cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79:7188–7202CrossRef
Zurück zum Zitat Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRef Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRef
Zurück zum Zitat Berndt S, Wesarg F, Wiegand C, Kralisch D, Müller F (2013) Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20:771–783CrossRef Berndt S, Wesarg F, Wiegand C, Kralisch D, Müller F (2013) Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20:771–783CrossRef
Zurück zum Zitat Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983CrossRef Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983CrossRef
Zurück zum Zitat Brown AJ (1886) XLIII.-On an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439CrossRef Brown AJ (1886) XLIII.-On an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439CrossRef
Zurück zum Zitat Cai ZJ, Yang G (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184CrossRef Cai ZJ, Yang G (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184CrossRef
Zurück zum Zitat Cai ZJ, Yang GA, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249CrossRef Cai ZJ, Yang GA, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249CrossRef
Zurück zum Zitat Çakar F, Özer I, Aytekin AO, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohyd Polym 106:7–13CrossRef Çakar F, Özer I, Aytekin AO, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohyd Polym 106:7–13CrossRef
Zurück zum Zitat Castro C, Zuluaga R, Alvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Ganan P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohyd Polym 89:1033–1037CrossRef Castro C, Zuluaga R, Alvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Ganan P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohyd Polym 89:1033–1037CrossRef
Zurück zum Zitat Cavka A, Guo X, Tang S-J, Winestrand S, Jönsson LJ, Hong F (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:25CrossRef Cavka A, Guo X, Tang S-J, Winestrand S, Jönsson LJ, Hong F (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:25CrossRef
Zurück zum Zitat Chaker A, Mutje P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259CrossRef Chaker A, Mutje P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259CrossRef
Zurück zum Zitat Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80CrossRef Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80CrossRef
Zurück zum Zitat Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124 Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124
Zurück zum Zitat Chen SY, Zou Y, Yan ZY, Shen W, Shi SK, Zhang X, Wang HP (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRef Chen SY, Zou Y, Yan ZY, Shen W, Shi SK, Zhang X, Wang HP (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRef
Zurück zum Zitat Chen HH, Chen LC, Huang HC, Lin SB (2011a) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583CrossRef Chen HH, Chen LC, Huang HC, Lin SB (2011a) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583CrossRef
Zurück zum Zitat Chen Y, Zhang YM, Ke FY, Zhou JH, Wang HP, Liang DH (2011b) Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer 52:481–488CrossRef Chen Y, Zhang YM, Ke FY, Zhou JH, Wang HP, Liang DH (2011b) Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer 52:481–488CrossRef
Zurück zum Zitat Chen H-H, Lin S-B, Hsu C-P, Chen L-C (2013) Modifying bacterial cellulose with gelatin peptides for improved rehydration. Cellulose 20:1967–1977CrossRef Chen H-H, Lin S-B, Hsu C-P, Chen L-C (2013) Modifying bacterial cellulose with gelatin peptides for improved rehydration. Cellulose 20:1967–1977CrossRef
Zurück zum Zitat Chen WS, Abe K, Uetani K, Yu HP, Liu YX, Yano H (2014a) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:1517–1528CrossRef Chen WS, Abe K, Uetani K, Yu HP, Liu YX, Yano H (2014a) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:1517–1528CrossRef
Zurück zum Zitat Chen Y, Zhou X, Lin Q, Jiang D (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef Chen Y, Zhou X, Lin Q, Jiang D (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef
Zurück zum Zitat Cheng K-C, Catchmark JM, Demirci A (2009a) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRef Cheng K-C, Catchmark JM, Demirci A (2009a) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRef
Zurück zum Zitat Cheng KC, Catchmark JM, Demirci A (2009b) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033–1045CrossRef Cheng KC, Catchmark JM, Demirci A (2009b) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033–1045CrossRef
Zurück zum Zitat Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456CrossRef Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456CrossRef
Zurück zum Zitat Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730–736CrossRef Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730–736CrossRef
Zurück zum Zitat Choi CN, Song HJ, Kim MJ, Chang MH, Kim SJ (2009) Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor. Korean J Chem Eng 26:136–140CrossRef Choi CN, Song HJ, Kim MJ, Chang MH, Kim SJ (2009) Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor. Korean J Chem Eng 26:136–140CrossRef
Zurück zum Zitat Ciechanska D, Struszczyk H, Kazimierczak J, Guzinska K, Pawlak M, Kozlowska E, Matusiak G, Dutkiewicz M (2002) New electro-acoustic transducers based on modified bacterial cellulose. Fibres Text East Eur 10:27–30 Ciechanska D, Struszczyk H, Kazimierczak J, Guzinska K, Pawlak M, Kozlowska E, Matusiak G, Dutkiewicz M (2002) New electro-acoustic transducers based on modified bacterial cellulose. Fibres Text East Eur 10:27–30
Zurück zum Zitat Çoban EP, Biyik H (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr J Microbiol Res 5:1037–1045 Çoban EP, Biyik H (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr J Microbiol Res 5:1037–1045
Zurück zum Zitat Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411CrossRef Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411CrossRef
Zurück zum Zitat Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohyd Polym 94:12–16CrossRef Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohyd Polym 94:12–16CrossRef
Zurück zum Zitat De Salvi DTB, Barud HS, Pawlicka A, Mattos RI, Raphael E, Messaddeq Y, Ribeiro SJL (2014) Bacterial cellulose/triethanolamine based ion-conducting membranes. Cellulose 21:1975–1985 De Salvi DTB, Barud HS, Pawlicka A, Mattos RI, Raphael E, Messaddeq Y, Ribeiro SJL (2014) Bacterial cellulose/triethanolamine based ion-conducting membranes. Cellulose 21:1975–1985
Zurück zum Zitat Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp nov and Gluconacetobacter rhaeticus sp nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370CrossRef Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp nov and Gluconacetobacter rhaeticus sp nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370CrossRef
Zurück zum Zitat Dissanayake D, Ismail FM (2013) Mathematical modeling of bacterial cellulose production by Acetobacter xylinum using rotating biological fermentor. In: Proceedings 27th European conference on modelling and simulation ECMS 2013. European Council Modelling and Simulation, Nottingham Dissanayake D, Ismail FM (2013) Mathematical modeling of bacterial cellulose production by Acetobacter xylinum using rotating biological fermentor. In: Proceedings 27th European conference on modelling and simulation ECMS 2013. European Council Modelling and Simulation, Nottingham
Zurück zum Zitat Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
Zurück zum Zitat El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3:1196–1217 El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3:1196–1217
Zurück zum Zitat Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978CrossRef Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978CrossRef
Zurück zum Zitat Feng YY, Zhang XQ, Shen YT, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohyd Polym 87:644–649CrossRef Feng YY, Zhang XQ, Shen YT, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohyd Polym 87:644–649CrossRef
Zurück zum Zitat Feng J, Shi Q, Li W, Shu X, Chen A, Xie X, Huang X (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21:4557–4567CrossRef Feng J, Shi Q, Li W, Shu X, Chen A, Xie X, Huang X (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21:4557–4567CrossRef
Zurück zum Zitat Fu LN, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92:1432–1442CrossRef Fu LN, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92:1432–1442CrossRef
Zurück zum Zitat Gao CA, Wan YZ, Yang CX, Dai KR, Tang TT, Luo HL, Wang JH (2011a) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mat 18:139–145CrossRef Gao CA, Wan YZ, Yang CX, Dai KR, Tang TT, Luo HL, Wang JH (2011a) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mat 18:139–145CrossRef
Zurück zum Zitat Gao QY, Shen XY, Lu XK (2011b) Regenerated bacterial cellulose fibers prepared by the NMMO center dot H2O process. Carbohyd Polym 83:1253–1256CrossRef Gao QY, Shen XY, Lu XK (2011b) Regenerated bacterial cellulose fibers prepared by the NMMO center dot H2O process. Carbohyd Polym 83:1253–1256CrossRef
Zurück zum Zitat Gao C, Yan T, Dai K, Wan Y (2012) Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose 19:761–768CrossRef Gao C, Yan T, Dai K, Wan Y (2012) Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose 19:761–768CrossRef
Zurück zum Zitat Gao C, Yan T, Du J, He F, Luo HL, Wan YZ (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising epsilon-polylysine nanocoatings. Food Hydrocoll 36:204–211CrossRef Gao C, Yan T, Du J, He F, Luo HL, Wan YZ (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising epsilon-polylysine nanocoatings. Food Hydrocoll 36:204–211CrossRef
Zurück zum Zitat Gardner DJ, Oporto GS, Mills R, Samir M (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef Gardner DJ, Oporto GS, Mills R, Samir M (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef
Zurück zum Zitat Ge HJ, Du SK, Lin DH, Zhang JN, Xiang JL, Li ZX (2011) Gluconacetobacter hansenii subsp nov., a High-Yield Bacterial Cellulose Producing Strain Induced by High Hydrostatic Pressure. Appl Biochem Biotechnol 165:1519–1531CrossRef Ge HJ, Du SK, Lin DH, Zhang JN, Xiang JL, Li ZX (2011) Gluconacetobacter hansenii subsp nov., a High-Yield Bacterial Cellulose Producing Strain Induced by High Hydrostatic Pressure. Appl Biochem Biotechnol 165:1519–1531CrossRef
Zurück zum Zitat Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631CrossRef Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631CrossRef
Zurück zum Zitat George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohyd Polym 87:2031–2037CrossRef George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohyd Polym 87:2031–2037CrossRef
Zurück zum Zitat George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohyd Polym 105:285–292CrossRef George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohyd Polym 105:285–292CrossRef
Zurück zum Zitat Gomes FP, Silva N, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211CrossRef Gomes FP, Silva N, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211CrossRef
Zurück zum Zitat Guo X, Cavka A, Jonsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:14CrossRef Guo X, Cavka A, Jonsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:14CrossRef
Zurück zum Zitat Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377:88–93CrossRef Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377:88–93CrossRef
Zurück zum Zitat Gutierrez J, Fernandes SCM, Mondragon I, Tercjak A (2013) Multifunctional hybrid nanopapers based on bacterial cellulose and sol-gel synthesized titanium/vanadium oxide nanoparticles. Cellulose 20:1301–1311CrossRef Gutierrez J, Fernandes SCM, Mondragon I, Tercjak A (2013) Multifunctional hybrid nanopapers based on bacterial cellulose and sol-gel synthesized titanium/vanadium oxide nanoparticles. Cellulose 20:1301–1311CrossRef
Zurück zum Zitat Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25:812–815CrossRef Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25:812–815CrossRef
Zurück zum Zitat Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar alpha-linked glucuronic acid-based oligosaccharide. Process Biochem 46:1717–1723CrossRef Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar alpha-linked glucuronic acid-based oligosaccharide. Process Biochem 46:1717–1723CrossRef
Zurück zum Zitat Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRef Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRef
Zurück zum Zitat Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345CrossRef
Zurück zum Zitat Hettrich K, Pinnow M, Volkert B, Passauer L, Fischer S (2014) Novel aspects of nanocellulose. Cellulose 21:2479–2488CrossRef Hettrich K, Pinnow M, Volkert B, Passauer L, Fischer S (2014) Novel aspects of nanocellulose. Cellulose 21:2479–2488CrossRef
Zurück zum Zitat Hirai A, Tsuji M, Horii F (2002) TEM study of band-like cellulose assemblies produced by Acetobacter xylinum at 4 degrees C. Cellulose 9:105–113CrossRef Hirai A, Tsuji M, Horii F (2002) TEM study of band-like cellulose assemblies produced by Acetobacter xylinum at 4 degrees C. Cellulose 9:105–113CrossRef
Zurück zum Zitat Hong F, Qiu KY (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohyd Polym 72:545–549CrossRef Hong F, Qiu KY (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohyd Polym 72:545–549CrossRef
Zurück zum Zitat Hong F, Guo X, Zhang S, S-f Han, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508CrossRef Hong F, Guo X, Zhang S, S-f Han, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508CrossRef
Zurück zum Zitat Hu Y, Catchmark JM (2010) Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109–113 Hu Y, Catchmark JM (2010) Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109–113
Zurück zum Zitat Hu Y, Catchmark JM (2011) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845CrossRef Hu Y, Catchmark JM (2011) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845CrossRef
Zurück zum Zitat Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011a) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457CrossRef Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011a) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457CrossRef
Zurück zum Zitat Hu WL, Liu SP, Chen SY, Wang HP (2011b) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661CrossRef Hu WL, Liu SP, Chen SY, Wang HP (2011b) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661CrossRef
Zurück zum Zitat Hu WL, Chen SY, Yang JX, Li Z, Wang HP (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd Polym 101:1043–1060CrossRef Hu WL, Chen SY, Yang JX, Li Z, Wang HP (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd Polym 101:1043–1060CrossRef
Zurück zum Zitat Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091CrossRef Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091CrossRef
Zurück zum Zitat Huang Y, Wang TH, Ji MZ, Yang JZ, Zhu CL, Sun DP (2014a) Simple preparation of carbonized bacterial cellulose-Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater Lett 128:93–96CrossRef Huang Y, Wang TH, Ji MZ, Yang JZ, Zhu CL, Sun DP (2014a) Simple preparation of carbonized bacterial cellulose-Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater Lett 128:93–96CrossRef
Zurück zum Zitat Huang Y, Zhu CL, Yang JZ, Nie Y, Chen CT, Sun DP (2014b) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRef Huang Y, Zhu CL, Yang JZ, Nie Y, Chen CT, Sun DP (2014b) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRef
Zurück zum Zitat Hungund BS, Gupta S (2010a) Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. J Microbial Biochem Technol 2:127–133CrossRef Hungund BS, Gupta S (2010a) Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. J Microbial Biochem Technol 2:127–133CrossRef
Zurück zum Zitat Hungund BS, Gupta SG (2010b) Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J Microbiol Biotechnol 26:1823–1828CrossRef Hungund BS, Gupta SG (2010b) Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J Microbiol Biotechnol 26:1823–1828CrossRef
Zurück zum Zitat Hungund BS, Gupta S (2010c) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172 Hungund BS, Gupta S (2010c) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172
Zurück zum Zitat Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef
Zurück zum Zitat Ishida T, Sugano Y, Nakai T, Shoda M (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci Biotechnol Biochem 66:1677–1681CrossRef Ishida T, Sugano Y, Nakai T, Shoda M (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci Biotechnol Biochem 66:1677–1681CrossRef
Zurück zum Zitat Jaramillo R, Tobio W, Escamilla J (2012) Effect of sucrose in the production of cellulose by Gluconacetobacter xylinus in static culture. Rev MVZ Córdoba 17:3004–3013 Jaramillo R, Tobio W, Escamilla J (2012) Effect of sucrose in the production of cellulose by Gluconacetobacter xylinus in static culture. Rev MVZ Córdoba 17:3004–3013
Zurück zum Zitat Jaramillo R, Perna O, Revollo AB, Arrieta C, Escamilla E (2013) Effect of different concentrations of fructose on bacterial cellulose production in static culture. Rev Colomb Cienc Anim 5:116–130 Jaramillo R, Perna O, Revollo AB, Arrieta C, Escamilla E (2013) Effect of different concentrations of fructose on bacterial cellulose production in static culture. Rev Colomb Cienc Anim 5:116–130
Zurück zum Zitat Jia SR, Ou HY, Chen GB, Choi DB, Cho KA, Okabe M, Cha WS (2004) Cellulose production from Gluconobacter oxydans TQ-B2. Biotechnol Bioprocess Eng 9:166–170CrossRef Jia SR, Ou HY, Chen GB, Choi DB, Cho KA, Okabe M, Cha WS (2004) Cellulose production from Gluconobacter oxydans TQ-B2. Biotechnol Bioprocess Eng 9:166–170CrossRef
Zurück zum Zitat Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106CrossRef Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106CrossRef
Zurück zum Zitat Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRef Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRef
Zurück zum Zitat Jung JY, Park JK, Chang HN (2005) Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb Technol 37:347–354CrossRef Jung JY, Park JK, Chang HN (2005) Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb Technol 37:347–354CrossRef
Zurück zum Zitat Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271CrossRef Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271CrossRef
Zurück zum Zitat Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp V6 cultured in shake flasks. Bioresour Technol 101:3602–3608CrossRef Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp V6 cultured in shake flasks. Bioresour Technol 101:3602–3608CrossRef
Zurück zum Zitat Kadere TT, Miyamoto T, Oniang’o RK, Kutima PM, Njoroge SM (2008) Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi). Afr J Biotechnol 7:2963–2971 Kadere TT, Miyamoto T, Oniang’o RK, Kutima PM, Njoroge SM (2008) Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi). Afr J Biotechnol 7:2963–2971
Zurück zum Zitat Kawaguchi I, Nakamura K (2007) Make-up tissue paper for removing cosmetics, comprises glycerin impregnated into a tissue paper which consists of pulp fiber, and bacterial cellulose entangled in the pulp interfiber forming a network structure. JP2009077752-A; JP4314292-B2 Kawaguchi I, Nakamura K (2007) Make-up tissue paper for removing cosmetics, comprises glycerin impregnated into a tissue paper which consists of pulp fiber, and bacterial cellulose entangled in the pulp interfiber forming a network structure. JP2009077752-A; JP4314292-B2
Zurück zum Zitat Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296CrossRef Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296CrossRef
Zurück zum Zitat Khan S, Ul-Islam M, Khattak W, Ullah M, Park J (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579CrossRef Khan S, Ul-Islam M, Khattak W, Ullah M, Park J (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579CrossRef
Zurück zum Zitat Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 131:705–715CrossRef Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 131:705–715CrossRef
Zurück zum Zitat Kim YJ, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537 Kim YJ, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537
Zurück zum Zitat Kim S, Li H, Oh I, Kee C, Kim M (2012) Effect of viscosity-inducing factors on oxygen transfer in production culture of bacterial cellulose. Korean J Chem Eng 29:792–797CrossRef Kim S, Li H, Oh I, Kee C, Kim M (2012) Effect of viscosity-inducing factors on oxygen transfer in production culture of bacterial cellulose. Korean J Chem Eng 29:792–797CrossRef
Zurück zum Zitat Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioprocess Eng 19:534–544CrossRef Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioprocess Eng 19:534–544CrossRef
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef
Zurück zum Zitat Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F, Yamada Y (1998) The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: the proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov. Biosci Biotechnol Biochem 62:185–187CrossRef Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F, Yamada Y (1998) The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: the proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov. Biosci Biotechnol Biochem 62:185–187CrossRef
Zurück zum Zitat Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRef Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRef
Zurück zum Zitat Kouda T, Naritomi T, Yano H, Yoshinaga F (1997a) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J Ferment Bioeng 84:124–127CrossRef Kouda T, Naritomi T, Yano H, Yoshinaga F (1997a) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J Ferment Bioeng 84:124–127CrossRef
Zurück zum Zitat Kouda T, Yano H, Yoshinaga F (1997b) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83:371–376CrossRef Kouda T, Yano H, Yoshinaga F (1997b) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83:371–376CrossRef
Zurück zum Zitat Kouda T, Naritomi M, Naritomi T, Yano H, Yoshinaga F (2000) Process for continuously preparing bacterial cellulose. Google Patents Kouda T, Naritomi M, Naritomi T, Yano H, Yoshinaga F (2000) Process for continuously preparing bacterial cellulose. Google Patents
Zurück zum Zitat Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biot 29:189–195CrossRef Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biot 29:189–195CrossRef
Zurück zum Zitat Kumbhar J, Rajwade J, Paknikar K (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691CrossRef Kumbhar J, Rajwade J, Paknikar K (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691CrossRef
Zurück zum Zitat Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77:41–46CrossRef Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77:41–46CrossRef
Zurück zum Zitat Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76:333–335CrossRef Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76:333–335CrossRef
Zurück zum Zitat Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772CrossRef Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772CrossRef
Zurück zum Zitat Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764CrossRef Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764CrossRef
Zurück zum Zitat Lee K-Y, Bismarck A (2012) Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19:891–900CrossRef Lee K-Y, Bismarck A (2012) Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19:891–900CrossRef
Zurück zum Zitat Lee K-Y, Quero F, Blaker J, Hill CS, Eichhorn S, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605CrossRef Lee K-Y, Quero F, Blaker J, Hill CS, Eichhorn S, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605CrossRef
Zurück zum Zitat Lee H-J, Chung T-J, Kwon H-J, Kim H-J, Tze W (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251–1258CrossRef Lee H-J, Chung T-J, Kwon H-J, Kim H-J, Tze W (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251–1258CrossRef
Zurück zum Zitat Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32CrossRef Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32CrossRef
Zurück zum Zitat Li DS, Liu ZY, Al-Haik M, Tehrani M, Murray F, Tannenbaum R, Garmestani H (2010) Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite. Polym Bull 65:635–642CrossRef Li DS, Liu ZY, Al-Haik M, Tehrani M, Murray F, Tannenbaum R, Garmestani H (2010) Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite. Polym Bull 65:635–642CrossRef
Zurück zum Zitat Li Y, Li GZ, Zou YL, Zhou QJ, Lian XX (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309CrossRef Li Y, Li GZ, Zou YL, Zhou QJ, Lian XX (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309CrossRef
Zurück zum Zitat Li Z, Wang L, Chen S, Feng C, Chen S, Yin N, Yang J, Wang H, Xu Y (2015) Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 22:373–383CrossRef Li Z, Wang L, Chen S, Feng C, Chen S, Yin N, Yang J, Wang H, Xu Y (2015) Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 22:373–383CrossRef
Zurück zum Zitat Liang HW, Guan QF, Zhu Z, Song LT, Yao HB, Lei X, Yu SH (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4:6CrossRef Liang HW, Guan QF, Zhu Z, Song LT, Yao HB, Lei X, Yu SH (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4:6CrossRef
Zurück zum Zitat Liimatainen H, Visanko M, Sirvio J, Hormi O, Niinimaki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749CrossRef Liimatainen H, Visanko M, Sirvio J, Hormi O, Niinimaki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749CrossRef
Zurück zum Zitat Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloid 23:2195–2203CrossRef Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloid 23:2195–2203CrossRef
Zurück zum Zitat Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013a) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRef Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013a) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRef
Zurück zum Zitat Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013b) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohyd Polym 94:603–611CrossRef Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013b) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohyd Polym 94:603–611CrossRef
Zurück zum Zitat Lin SP, Hsieh SC, Chen KI, Demirci A, Cheng KC (2014) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21:835–844CrossRef Lin SP, Hsieh SC, Chen KI, Demirci A, Cheng KC (2014) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21:835–844CrossRef
Zurück zum Zitat Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp nov. J Gen Appl Microbiol 47:119–131CrossRef Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp nov. J Gen Appl Microbiol 47:119–131CrossRef
Zurück zum Zitat Liu J, Korpinen R, Mikkonen KS, Willfor S, Xu CL (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21:2587–2598CrossRef Liu J, Korpinen R, Mikkonen KS, Willfor S, Xu CL (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21:2587–2598CrossRef
Zurück zum Zitat Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PCD (2014) Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol 67:401–408CrossRef Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PCD (2014) Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol 67:401–408CrossRef
Zurück zum Zitat Lu HM, Jiang XL (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol 172:3844–3861CrossRef Lu HM, Jiang XL (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol 172:3844–3861CrossRef
Zurück zum Zitat Lu XK, Shen XY (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohyd Polym 86:239–244CrossRef Lu XK, Shen XY (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohyd Polym 86:239–244CrossRef
Zurück zum Zitat Lu ZG, Zhang YY, Chi YJ, Xu N, Yao WY, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281–2285CrossRef Lu ZG, Zhang YY, Chi YJ, Xu N, Yao WY, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281–2285CrossRef
Zurück zum Zitat Lu M, Zhang YM, Guan XH, Xu XH, Gao TT (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Met Soc China 24:1912–1917CrossRef Lu M, Zhang YM, Guan XH, Xu XH, Gao TT (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Met Soc China 24:1912–1917CrossRef
Zurück zum Zitat Luna-Martinez JF, Hernandez-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, Gonzalez-Gonzalez VA, Sepulveda-Guzman S (2011) Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohyd Polym 84:566–570CrossRef Luna-Martinez JF, Hernandez-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, Gonzalez-Gonzalez VA, Sepulveda-Guzman S (2011) Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohyd Polym 84:566–570CrossRef
Zurück zum Zitat Luo HL, Zhang J, Xiong GY, Wan YZ (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohyd Polym 111:722–728CrossRef Luo HL, Zhang J, Xiong GY, Wan YZ (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohyd Polym 111:722–728CrossRef
Zurück zum Zitat Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohyd Polym 84:383–389CrossRef Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohyd Polym 84:383–389CrossRef
Zurück zum Zitat Ma T, Zhao Q, Ji K, Zeng B, Li G (2014) Homogeneous and porous modified bacterial cellulose achieved by in situ modification with low amounts of carboxymethyl cellulose. Cellulose 21:2637–2646CrossRef Ma T, Zhao Q, Ji K, Zeng B, Li G (2014) Homogeneous and porous modified bacterial cellulose achieved by in situ modification with low amounts of carboxymethyl cellulose. Cellulose 21:2637–2646CrossRef
Zurück zum Zitat Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418CrossRef Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418CrossRef
Zurück zum Zitat Martínez-Sanz M, Vicente A, Gontard N, Lopez-Rubio A, Lagaron J (2015) On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose 22:535–551CrossRef Martínez-Sanz M, Vicente A, Gontard N, Lopez-Rubio A, Lagaron J (2015) On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose 22:535–551CrossRef
Zurück zum Zitat Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 60:575–579CrossRef Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 60:575–579CrossRef
Zurück zum Zitat Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18:1002–1010CrossRef Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18:1002–1010CrossRef
Zurück zum Zitat Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas ME, Torabi M (2010) The effects of cotton gauze coating with microbial cellulose. Cellulose 17:199–204CrossRef Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas ME, Torabi M (2010) The effects of cotton gauze coating with microbial cellulose. Cellulose 17:199–204CrossRef
Zurück zum Zitat Mehta K, Pfeffer S, Brown RM Jr (2015) Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose 22:119–137CrossRef Mehta K, Pfeffer S, Brown RM Jr (2015) Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose 22:119–137CrossRef
Zurück zum Zitat Merayo N, Fuente E, Mutjé P, Negro C (2014) Uso de NFC a partir de pasta de eucalipto y residuos de maíz para mejorar la resistencia del papel reciclado. Paper presented at the XXVII Congreso Interamericano y Colombiano de Ingeniería Química, Cartagena de Indias Merayo N, Fuente E, Mutjé P, Negro C (2014) Uso de NFC a partir de pasta de eucalipto y residuos de maíz para mejorar la resistencia del papel reciclado. Paper presented at the XXVII Congreso Interamericano y Colombiano de Ingeniería Química, Cartagena de Indias
Zurück zum Zitat Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRef Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRef
Zurück zum Zitat Mikkelsen D, Flanagan B, Dykes G, Gidley M (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583CrossRef Mikkelsen D, Flanagan B, Dykes G, Gidley M (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583CrossRef
Zurück zum Zitat Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G-hansenii NCIM 2529. Carbohyd Polym 106:132–141CrossRef Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G-hansenii NCIM 2529. Carbohyd Polym 106:132–141CrossRef
Zurück zum Zitat Moon S-H, Park J-M, Chun H-Y, Kim S-J (2006) Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnol Bioprocess Eng 11:26–31CrossRef Moon S-H, Park J-M, Chun H-Y, Kim S-J (2006) Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnol Bioprocess Eng 11:26–31CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Moran-Mirabal J (2013) The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy. Cellulose 20:2291–2309CrossRef Moran-Mirabal J (2013) The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy. Cellulose 20:2291–2309CrossRef
Zurück zum Zitat Muller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef Muller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef
Zurück zum Zitat Muller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRef Muller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRef
Zurück zum Zitat Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D (2013) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol 195:958–964CrossRef Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D (2013) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol 195:958–964CrossRef
Zurück zum Zitat Naritomi T, Kouda T, Yano H, Yoshinaga F (1998a) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:598–603CrossRef Naritomi T, Kouda T, Yano H, Yoshinaga F (1998a) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:598–603CrossRef
Zurück zum Zitat Naritomi T, Kouda T, Yano H, Yoshinaga F (1998b) Effect of lactate on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:89–95CrossRef Naritomi T, Kouda T, Yano H, Yoshinaga F (1998b) Effect of lactate on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:89–95CrossRef
Zurück zum Zitat Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38:41–47CrossRef Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38:41–47CrossRef
Zurück zum Zitat Negro C, Merayo N, Seara M, Balea A, Fuente Edl, Blanco A (2015) Effect of NFC added in mass to a recycled pulp on the flocculation process. Paper presented at the 10th European Congress of Chemical Engineering, Nice, France Negro C, Merayo N, Seara M, Balea A, Fuente Edl, Blanco A (2015) Effect of NFC added in mass to a recycled pulp on the flocculation process. Paper presented at the 10th European Congress of Chemical Engineering, Nice, France
Zurück zum Zitat Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of Cellulose Production by a Gluconacetobacter xylinus Strain from Kombucha. Curr Microbiol 57:449–453CrossRef Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of Cellulose Production by a Gluconacetobacter xylinus Strain from Kombucha. Curr Microbiol 57:449–453CrossRef
Zurück zum Zitat Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001CrossRef Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001CrossRef
Zurück zum Zitat Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64:199–205CrossRef Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64:199–205CrossRef
Zurück zum Zitat Oikawa T, Morino T, Ameyama M (1995a) Production of cellulose from D-Arabitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:1564–1565CrossRef Oikawa T, Morino T, Ameyama M (1995a) Production of cellulose from D-Arabitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:1564–1565CrossRef
Zurück zum Zitat Oikawa T, Ohtori T, Ameyama M (1995b) Production of cellulose from D-mannitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:331–332CrossRef Oikawa T, Ohtori T, Ameyama M (1995b) Production of cellulose from D-mannitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:331–332CrossRef
Zurück zum Zitat Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym 68:376–383CrossRef Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym 68:376–383CrossRef
Zurück zum Zitat Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohyd Polym 83:953–958CrossRef Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohyd Polym 83:953–958CrossRef
Zurück zum Zitat Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
Zurück zum Zitat Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2014) Acetosulfation of bacterial cellulose: an unexplored promising incipient candidate for highly transparent thin film. Mater Express 4:415–421CrossRef Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2014) Acetosulfation of bacterial cellulose: an unexplored promising incipient candidate for highly transparent thin film. Mater Express 4:415–421CrossRef
Zurück zum Zitat Park JK, Park YH, Jung JY (2003) Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol Bioprocess Eng 8:83–88CrossRef Park JK, Park YH, Jung JY (2003) Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol Bioprocess Eng 8:83–88CrossRef
Zurück zum Zitat Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15:2718–2724CrossRef Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15:2718–2724CrossRef
Zurück zum Zitat Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJL (2007) Chapter 17—bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. In: Gandini MNBA (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383CrossRef Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJL (2007) Chapter 17—bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. In: Gandini MNBA (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383CrossRef
Zurück zum Zitat Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055CrossRef Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055CrossRef
Zurück zum Zitat Pelissari FM, Sobral PJD, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef Pelissari FM, Sobral PJD, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef
Zurück zum Zitat Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206CrossRef Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206CrossRef
Zurück zum Zitat Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohyd Polym 111:505–513CrossRef Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohyd Polym 111:505–513CrossRef
Zurück zum Zitat Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97:226–234CrossRef Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97:226–234CrossRef
Zurück zum Zitat Raghunathan D (2013) Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol App Sci 2:275–290 Raghunathan D (2013) Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol App Sci 2:275–290
Zurück zum Zitat Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21:3585–3595CrossRef Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21:3585–3595CrossRef
Zurück zum Zitat Reiner RS (2008) Cellulose Nanocrystals: preparation and processing. Paper presented at the international conference on nanotechnology for the Forest Products Industry, St. Louis, Missouri, USA Reiner RS (2008) Cellulose Nanocrystals: preparation and processing. Paper presented at the international conference on nanotechnology for the Forest Products Industry, St. Louis, Missouri, USA
Zurück zum Zitat Ren Y, Li SR, Dai B, Huang XH (2014) Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose. Appl Surf Sci 311:1–4CrossRef Ren Y, Li SR, Dai B, Huang XH (2014) Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose. Appl Surf Sci 311:1–4CrossRef
Zurück zum Zitat Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragon I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 19:103–109CrossRef Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragon I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 19:103–109CrossRef
Zurück zum Zitat Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, Martinez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125CrossRef Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, Martinez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125CrossRef
Zurück zum Zitat Rosa JR, da Silva ISV, de Lima CSM, Neto WPF, Silverio HA, dos Santos DB, Barud HD, Ribeiro SJL, Pasquini D (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368 Rosa JR, da Silva ISV, de Lima CSM, Neto WPF, Silverio HA, dos Santos DB, Barud HD, Ribeiro SJL, Pasquini D (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368
Zurück zum Zitat Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58 Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58
Zurück zum Zitat Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd Polym 92:1717–1723CrossRef Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd Polym 92:1717–1723CrossRef
Zurück zum Zitat Ruka D, Simon G, Dean K (2014) Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose 21:4299–4308CrossRef Ruka D, Simon G, Dean K (2014) Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose 21:4299–4308CrossRef
Zurück zum Zitat Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohyd Polym 116:173–181CrossRef Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohyd Polym 116:173–181CrossRef
Zurück zum Zitat Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189:340–347CrossRef Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189:340–347CrossRef
Zurück zum Zitat Sehaqui H, de Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844CrossRef Sehaqui H, de Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844CrossRef
Zurück zum Zitat Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRef Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRef
Zurück zum Zitat Shafizadeh F, Lai YZ, McIntyre CR (1978) Thermal-degradation of 6-chlorocellulose and cellulose zinc chloride mixture. J Appl Polym Sci 22:1183–1193CrossRef Shafizadeh F, Lai YZ, McIntyre CR (1978) Thermal-degradation of 6-chlorocellulose and cellulose zinc chloride mixture. J Appl Polym Sci 22:1183–1193CrossRef
Zurück zum Zitat Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15:110–118CrossRef Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15:110–118CrossRef
Zurück zum Zitat Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98:1585–1598CrossRef Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98:1585–1598CrossRef
Zurück zum Zitat Shen W, Chen SY, Shi SK, Li X, Zhang X, Hu WL, Wang HP (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym 75:110–114CrossRef Shen W, Chen SY, Shi SK, Li X, Zhang X, Hu WL, Wang HP (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym 75:110–114CrossRef
Zurück zum Zitat Shezad O, Khan S, Khan T, Park JK (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J Chem Eng 26:1689–1692CrossRef Shezad O, Khan S, Khan T, Park JK (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J Chem Eng 26:1689–1692CrossRef
Zurück zum Zitat Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd Polym 82:173–180CrossRef Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd Polym 82:173–180CrossRef
Zurück zum Zitat Shi ZJ, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloid 35:539–545CrossRef Shi ZJ, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloid 35:539–545CrossRef
Zurück zum Zitat Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRef Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRef
Zurück zum Zitat Silva N, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd Polym 106:264–269CrossRef Silva N, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd Polym 106:264–269CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
Zurück zum Zitat Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206CrossRef Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206CrossRef
Zurück zum Zitat Son C, Chung S, Lee J, Kim S (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J Microbiol Biotechnol 12:722–728 Son C, Chung S, Lee J, Kim S (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J Microbiol Biotechnol 12:722–728
Zurück zum Zitat Song HJ, Li HX, Seo JH, Kim MJ, Kim SJ (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146CrossRef Song HJ, Li HX, Seo JH, Kim MJ, Kim SJ (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146CrossRef
Zurück zum Zitat Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852CrossRef Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852CrossRef
Zurück zum Zitat Spaic M, Small D, Cook J, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540CrossRef Spaic M, Small D, Cook J, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540CrossRef
Zurück zum Zitat Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRef Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRef
Zurück zum Zitat Sun DP, Zhou LL, Wu QH, Yang SL (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol Mat Sci Ed 22:677–680CrossRef Sun DP, Zhou LL, Wu QH, Yang SL (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol Mat Sci Ed 22:677–680CrossRef
Zurück zum Zitat Sun DP, Ma B, Zhu CL, Liu CS, Yang JZ (2010) Novel Nitrocellulose Made from Bacterial Cellulose. J Energ Mater 28:85–97CrossRef Sun DP, Ma B, Zhu CL, Liu CS, Yang JZ (2010) Novel Nitrocellulose Made from Bacterial Cellulose. J Energ Mater 28:85–97CrossRef
Zurück zum Zitat Surma-Slusarska B, Danielewicz D, Presler S (2008a) Properties of composites of unbeaten birch and pine sulphate pulps with bacterial cellulose. Fibres Text East Eur 16:127–129 Surma-Slusarska B, Danielewicz D, Presler S (2008a) Properties of composites of unbeaten birch and pine sulphate pulps with bacterial cellulose. Fibres Text East Eur 16:127–129
Zurück zum Zitat Surma-Slusarska B, Presler S, Danielewicz D (2008b) Characteristics of Bacterial Cellulose Obtained from Acetobacter Xylinum Culture for Application in Papermaking. Fibres Text East Eur 16:108–111 Surma-Slusarska B, Presler S, Danielewicz D (2008b) Characteristics of Bacterial Cellulose Obtained from Acetobacter Xylinum Culture for Application in Papermaking. Fibres Text East Eur 16:108–111
Zurück zum Zitat Suwanposri A, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7:70–82 Suwanposri A, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7:70–82
Zurück zum Zitat Suzuki S, Hirai A, Horii F (2012a) Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules. Cellulose 19:1607–1618CrossRef Suzuki S, Hirai A, Horii F (2012a) Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules. Cellulose 19:1607–1618CrossRef
Zurück zum Zitat Suzuki S, Suzuki F, Kanie Y, Tsujitani K, Hirai A, Kaji H, Horii F (2012b) Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose 19:713–727CrossRef Suzuki S, Suzuki F, Kanie Y, Tsujitani K, Hirai A, Kaji H, Horii F (2012b) Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose 19:713–727CrossRef
Zurück zum Zitat Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. In: Twenty-second symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 503–513 Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. In: Twenty-second symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 503–513
Zurück zum Zitat Tome LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470CrossRef Tome LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470CrossRef
Zurück zum Zitat Tomé L, Fernandes SM, Perez D, Sadocco P, Silvestre AD, Neto C, Marrucho I, Freire CR (2013) The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose 20:1807–1818CrossRef Tomé L, Fernandes SM, Perez D, Sadocco P, Silvestre AD, Neto C, Marrucho I, Freire CR (2013) The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose 20:1807–1818CrossRef
Zurück zum Zitat Tomer G, Patel H, Podczeck F, Newton JM (2001) Measuring the water retention capacities (MRC) of different microcrystalline cellulose grades. Eur J Pharm Sci 12:321–325CrossRef Tomer G, Patel H, Podczeck F, Newton JM (2001) Measuring the water retention capacities (MRC) of different microcrystalline cellulose grades. Eur J Pharm Sci 12:321–325CrossRef
Zurück zum Zitat Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849CrossRef Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849CrossRef
Zurück zum Zitat Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011CrossRef Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011CrossRef
Zurück zum Zitat Ul-Islam M, Khan T, Khattak W, Park J (2013a) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596CrossRef Ul-Islam M, Khan T, Khattak W, Park J (2013a) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596CrossRef
Zurück zum Zitat Ul-Islam M, Khattak W, Kang M, Kim S, Khan T, Park J (2013b) Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose 20:253–263CrossRef Ul-Islam M, Khattak W, Kang M, Kim S, Khan T, Park J (2013b) Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose 20:253–263CrossRef
Zurück zum Zitat Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stabil 59:93–99CrossRef Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stabil 59:93–99CrossRef
Zurück zum Zitat Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by gluconacetobacter xylinus. J Polym Environ 21:545–554CrossRef Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by gluconacetobacter xylinus. J Polym Environ 21:545–554CrossRef
Zurück zum Zitat Vilaseca F, Gonzalez I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutje P (2014) From paper to nanopaper: evolution of mechanical and physical properties. In: Ongoing modification of cellulose nanofibers and their potential appications, Madrid, Spain Vilaseca F, Gonzalez I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutje P (2014) From paper to nanopaper: evolution of mechanical and physical properties. In: Ongoing modification of cellulose nanofibers and their potential appications, Madrid, Spain
Zurück zum Zitat Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405 Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405
Zurück zum Zitat Wang HH, Zhu EW, Yang JZ, Zhou PP, Sun DP, Tang WH (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116:13013–13019CrossRef Wang HH, Zhu EW, Yang JZ, Zhou PP, Sun DP, Tang WH (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116:13013–13019CrossRef
Zurück zum Zitat Wang QQ, Zhu JY, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5:2527–2534CrossRef Wang QQ, Zhu JY, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5:2527–2534CrossRef
Zurück zum Zitat Wei B, Yang GA, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohyd Polym 84:533–538CrossRef Wei B, Yang GA, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohyd Polym 84:533–538CrossRef
Zurück zum Zitat Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohyd Polym 90:116–121CrossRef Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohyd Polym 90:116–121CrossRef
Zurück zum Zitat Wu J-M, Liu R-H (2013) Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J Biosci Bioeng 115:284–290CrossRef Wu J-M, Liu R-H (2013) Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J Biosci Bioeng 115:284–290CrossRef
Zurück zum Zitat Wu R-Q, Li Z-X, Yang J-P, Xing X-H, Shao D-Y, Xing K-L (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405CrossRef Wu R-Q, Li Z-X, Yang J-P, Xing X-H, Shao D-Y, Xing K-L (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405CrossRef
Zurück zum Zitat Wu J, Zheng YD, Wen XX, Lin QH, Chen XH, Wu ZG (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:12CrossRef Wu J, Zheng YD, Wen XX, Lin QH, Chen XH, Wu ZG (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:12CrossRef
Zurück zum Zitat Yang YK, Park SH, Hwang JW, Pyun YR, Kim YS (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317CrossRef Yang YK, Park SH, Hwang JW, Pyun YR, Kim YS (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317CrossRef
Zurück zum Zitat Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films Prepared from Electrosterically Stabilized Nanocrystalline Cellulose. Langmuir 28:7834–7842CrossRef Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films Prepared from Electrosterically Stabilized Nanocrystalline Cellulose. Langmuir 28:7834–7842CrossRef
Zurück zum Zitat Yang Y, Jia JJ, Xing JR, Chen JB, Lu SM (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohyd Polym 92:2012–2017CrossRef Yang Y, Jia JJ, Xing JR, Chen JB, Lu SM (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohyd Polym 92:2012–2017CrossRef
Zurück zum Zitat Yang JX, Lv XG, Chen SY, Li Z, Feng C, Wang HP, Xu YM (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835CrossRef Yang JX, Lv XG, Chen SY, Li Z, Feng C, Wang HP, Xu YM (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835CrossRef
Zurück zum Zitat Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284CrossRef Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284CrossRef
Zurück zum Zitat Yu SY, Lin KW (2014) Influence of Bacterial Cellulose (nata) on the Physicochemical and Sensory Properties of Frankfurter. J Food Sci 79:C1117–C1122CrossRef Yu SY, Lin KW (2014) Influence of Bacterial Cellulose (nata) on the Physicochemical and Sensory Properties of Frankfurter. J Food Sci 79:C1117–C1122CrossRef
Zurück zum Zitat Zang SS, Sun Z, Liu K, Wang G, Zhang R, Liu BF, Yang G (2014) Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Mater Lett 128:314–318CrossRef Zang SS, Sun Z, Liu K, Wang G, Zhang R, Liu BF, Yang G (2014) Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Mater Lett 128:314–318CrossRef
Zurück zum Zitat Zeng XB, Small DP, Wan WK (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohyd Polym 85:506–513CrossRef Zeng XB, Small DP, Wan WK (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohyd Polym 85:506–513CrossRef
Zurück zum Zitat Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469CrossRef Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469CrossRef
Zurück zum Zitat Zhang W, Chen SY, Hu WL, Zhou BH, Yang ZH, Yin N, Wang HP (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohyd Polym 86:1760–1767CrossRef Zhang W, Chen SY, Hu WL, Zhou BH, Yang ZH, Yin N, Wang HP (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohyd Polym 86:1760–1767CrossRef
Zurück zum Zitat Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79:1086–1093CrossRef Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79:1086–1093CrossRef
Metadaten
Titel
Enhancement of the fermentation process and properties of bacterial cellulose: a review
verfasst von
Cristina Campano
Ana Balea
Angeles Blanco
Carlos Negro
Publikationsdatum
18.11.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0802-0

Weitere Artikel der Ausgabe 1/2016

Cellulose 1/2016 Zur Ausgabe