Skip to main content
Log in

Dissolution of cellobiose in the aqueous solutions of chloride salts: Hofmeister series consideration

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effects of chloride salts on the dissolution of cellobiose in aqueous solution were investigated using calorimetry and 1H NMR. The dissolution of cellobiose in salt solutions is a typical entropy-driven process. The activity of ZnCl2 and LiCl hydrated ions is enhanced as the hydration number decreases with increasing temperature. Zn2+ and Li+ hydrates can interact with the oxygen atoms at the O5 and O6 positions of cellobiose and associate with the Cl anions, leading to the breakage of cellobiose hydrogen bonds. We found that the solubility of cellobiose in aqueous solutions is on the order of ZnCl2 > LiCl > NaCl > H2O > KCl > NH4Cl, which is consistent with the Hofmeister series. For the first time, we recognized the specific ionic effects of the Hofmeister series on the dissolution of cellobiose in salt aqueous solutions. This finding is helpful for understanding the dissolving mechanism of cellulose in aqueous solvents with salts and providing fundamental knowledge for finding and designing new cellulose solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allolio C, Salas-Illanes N, Desmukh YS, Hansen MR, Sebastiani D (2013) H-bonding competition and clustering in aqueous LiI. J Phys Chem B 117:9939–9946

    Article  CAS  Google Scholar 

  • Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromolecules 15:791–798

    Article  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1984) Mechanism of protein salting in and salting out by divalent-cation salts—balance between hydration and salt binding. Biochemistry 23:5912–5923

    Article  CAS  Google Scholar 

  • Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  CAS  Google Scholar 

  • Collins KD, Washabaugh MW (1985) The hofmeister effect and the behavior of water at interfaces. Q Rev Biophys 18:323–422

    Article  CAS  Google Scholar 

  • Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104

    Article  CAS  Google Scholar 

  • Cooper A (2011) Microcalorimetry of heat capacity and volumetric changes in biomolecular interactions-the link to solvation? J Therm Anal Calorim 104:69–73

    Article  CAS  Google Scholar 

  • Cox JD, Riedel O (1974) Recommended reference materials for the realization of physicochemical properties: enthalpy. Pure Appl Chem 40:432–433

    Google Scholar 

  • Fischer S, Voigt W, Fischer K (1999) The behaviour of cellulose in hydrated melts of the composition LiX·nH2O (X = I, NO3 , CH3COO, ClO4 ). Cellulose 6:213–219

    Article  CAS  Google Scholar 

  • Fischer S, Leipner H, Thummler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  • Florin E, Kjellander R, Eriksson JC (1984) Salt effects on the cloud point of the poly(ethylene oxide) + water-system. J Chem Soc -Faraday Trans I 80:2889–2910

    Article  CAS  Google Scholar 

  • Garbacz P, Price WS (2014) 1H NMR diffusion studies of water self-diffusion in supercooled aqueous sodium chloride solutions. J Phys Chem A 118:3307–3312

    Article  CAS  Google Scholar 

  • Hattori M, Koga T, Shimaya Y, Saito M (1998a) Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose. Polym J 30:43–48

    Article  CAS  Google Scholar 

  • Hattori M, Shimaya Y, Saito M (1998b) Solubility and dissolved cellulose in aqueous calcium- and sodium-thiocyanate solution. Polym J 30:49–55

    Article  CAS  Google Scholar 

  • Hattori M, Shimaya Y, Saito M (1998c) Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution. Polym J 30:37–42

    Article  CAS  Google Scholar 

  • Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Hindman JC (1962) Nuclear magnetic resonance effects in aqueous solutions of 1–1 electrolytes. J Chem Phys 36:1000–1015

    Article  CAS  Google Scholar 

  • Isobe N, Chen XX, Kim UJ, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195–201

    Article  CAS  Google Scholar 

  • Jiang ZW et al (2014) Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system. J Phys Chem B 118:10250–10257

    Article  CAS  Google Scholar 

  • Kalcher I, Horinek D, Netz RR, Dzubiella J (2009) Ion specific correlations in bulk and at biointerfaces. J Phys-Condes Matter 21:424108

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kuga S (1980) The porous structure of cellulose gel regenerated from calcium thiocyanate solution. J Colloid Interface Sci 77:413–417

    Article  CAS  Google Scholar 

  • Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37

    Article  CAS  Google Scholar 

  • Leipner H, Fischer S, Brendler E, Voigt W (2000) Structural changes of cellulose dissolved in molten salt hydrates. Macromol Chem Phys 201:2041–2049

    Article  CAS  Google Scholar 

  • Letters K (1932) Viscosimetric analysis on the reaction of cellulose with concentrated zinc chloride solutions. Kolloid-Zeitschrift 58:229–239

    Article  CAS  Google Scholar 

  • Liebert T (2010) Cellulose solvents—remarkable history, bright future. In: Liebert T, Heinze T, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. American Chemical Society, Washington, DC, pp 3–54. doi:10.1021/bk-2010-1033

  • Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Liu ZJ et al (2015) Effects of additives on dissolution of cellobiose in aqueous solvents. Cellulose 22:1641–1652

    Article  CAS  Google Scholar 

  • Lukanoff B, Stern W, Loth F, Dautzenber H (1984) Spherical or flat cellulose article preparation by adding formalin to cellulose suspended in calcium thiocyanate melt, heating, cooling, shaping the solution obtained and coagulating. Patent number: DD206675-A

  • Malinows ER, Knapp PS, Feuer B (1966) NMR studies of aqueous electrolyte solutions. I. Hydration number of NaCl determined from temperature effects on proton shift. J Chem Phys 45:4274–4279

    Article  Google Scholar 

  • Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40

    Article  CAS  Google Scholar 

  • Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13:4118–4125

    Article  CAS  Google Scholar 

  • Muller N (1965) Concerning structural models for water and chemical-shift data. J Chem Phys 43:2555–2556

    Article  CAS  Google Scholar 

  • Nishio Y, Chiba R, Miyashita Y, Oshima K, Miyajima T, Kimura N, Suzuki H (2002) Salt addition effects on mesophase structure and optical properties of aqueous hydroxypropyl cellulose solutions. Polym J 34:149–157

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Okur HI, Kherb J, Cremer PS (2013) Cations bind only weakly to amides in aqueous solutions. J Am Chem Soc 135:5062–5067

    Article  CAS  Google Scholar 

  • Piekarski H, Nowicka B (2010) Calorimetric studies of interactions of some peptides with electrolytes, urea and ethanol in water at 298.15 K. J Therm Anal Calorim 102:31–36

    Article  CAS  Google Scholar 

  • Ragauskas AJ et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Roshind MU, Tahtinen P, Niemitz M, Sjhohn R (2008) Complete assignments of the 1H and 13C chemical shifts and J(H, H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr Res 343:101–112

    Article  Google Scholar 

  • Schaschel E, Day MC (1968) Ion–solvent interaction. Solvation of the sodium ion. J Am Chem Soc 90:503–504

    Article  CAS  Google Scholar 

  • Schneider WG, Bernstein HJ, Pople JA (1958) Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules. J Chem Phys 28:601–607

    Article  CAS  Google Scholar 

  • Shoolery JN, Alder BJ (1955) Nuclear magnetic resonance in concentrated aqueous electrolytes. J Chem Phys 23:805–811

    Article  CAS  Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenerg 31:416–425

    Article  Google Scholar 

  • Thormann E (2012) On understanding of the Hofmeister effect: how addition of salt alters the stability of temperature responsive polymers in aqueous solutions. RSC Adv 2:8297–8305

    Article  CAS  Google Scholar 

  • Traube J (1910) The attraction pressure. J Phys Chem 14:452–470

    Article  CAS  Google Scholar 

  • Walrafen GE (1966) Raman spectral studies of effects of temperature on water and electrolyte solutions. J Chem Phys 44:1546–1558

    Article  CAS  Google Scholar 

  • Warwicke JO (1967) Effect of chemical reagents on fine structure of cellulose. 4. Action of caustic soda on fine structure of cotton and ramie. J Polym Sci: Polym Chem 5:2579–2593

    Article  Google Scholar 

  • Yang YJ, Shin JM, Kang TH, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in aqueous lithium bromide solutions. Cellulose 21:1175–1181

    Article  CAS  Google Scholar 

  • Zhang YJ, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  Google Scholar 

  • Zhang YJ, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83

    Article  CAS  Google Scholar 

  • Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    Article  CAS  Google Scholar 

  • Zhang C, Liu RG, Xiang JF, Kang HL, Liu ZJ, Huang Y (2014) Dissolution mechanism of cellulose in N, N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Prof. H. K. Yan from the Institute of Chemistry, Chinese Academy of Sciences for the valuable discussions. Financial support from the National Natural Science Foundation of China (grant nos. 21274154, 51473174 and 51373191) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruigang Liu or Yong Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 84,688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, C., Liu, R. et al. Dissolution of cellobiose in the aqueous solutions of chloride salts: Hofmeister series consideration. Cellulose 23, 295–305 (2016). https://doi.org/10.1007/s10570-015-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0827-4

Keywords

Navigation