Skip to main content
Erschienen in: Cellulose 4/2016

15.06.2016 | Original Paper

The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering

verfasst von: Juan Guo, Harald Rennhofer, Yafang Yin, Helga C. Lichtenegger

Erschienen in: Cellulose | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tracking the changes of cellulose crystallites upon thermo-hygro-mechanical treatment is essential to understand the response of wood cell walls to steam and compression. In this paper the influence of Compression combined with Steam (CS) treatment on wood cellulose crystallites and pores structure of Chinese fir (Cunninghamia lanceolata) was studied under different steaming temperatures and compression ratios. Small-angle X-ray scattering and wide-angle X-ray scattering were used to investigate the changes of cellulose crystallites dimension, aspect ratio, fibril diameter distribution, non-crystalline fraction, the number of chains in each microfibril, as well as the fractal dimension and size of pores in response to CS treatment conditions. Results indicate that the crystallinity increased due to CS treatment, but did not show alteration with varying CS treatment conditions, i.e. seemed nearly unaffected by higher temperatures or compression ratio, both for earlywood and latewood. The cellulose crystallite diameter depended on processing parameters: it increased with increasing treatment temperature. No considerable differences were found for earlywood and latewood. We interpret our findings as a rearrangement of adjacent cellulose chains towards higher crystalline perfection attributing to the increase in crystallinity. The same effect allows a larger coherence length of crystalline order and therefore features an increasing cross-sectional dimension. In general we can state that the CS treatment leads to higher crystallinity and more perfectly arranged cellulose crystals, while it does not greatly affect the microfibril diameter but rather the amorphous regions of the microfibrils and the surrounding hemicellulose and lignin.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59(4):422–427CrossRef Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59(4):422–427CrossRef
Zurück zum Zitat Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472CrossRef Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472CrossRef
Zurück zum Zitat Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436CrossRef Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436CrossRef
Zurück zum Zitat Burgert I, Fratzl P (2009) Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr Comp Biol 49(1):69–79CrossRef Burgert I, Fratzl P (2009) Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr Comp Biol 49(1):69–79CrossRef
Zurück zum Zitat Cheng W, Xing X, Wang D, Zhang K, Cai Q, Mo G, Chen Z, Wu Z (2011) Small-angle X-ray scattering study on nanostructural changes with water content in red pine, American pine, and white ash. J Wood Sci 57:470–478CrossRef Cheng W, Xing X, Wang D, Zhang K, Cai Q, Mo G, Chen Z, Wu Z (2011) Small-angle X-ray scattering study on nanostructural changes with water content in red pine, American pine, and white ash. J Wood Sci 57:470–478CrossRef
Zurück zum Zitat Cheng G, Zhang X, Simmons B, Singh S (2015) Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy Environ Sci 8(2):436–455CrossRef Cheng G, Zhang X, Simmons B, Singh S (2015) Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy Environ Sci 8(2):436–455CrossRef
Zurück zum Zitat Dwianto W, Morooka T, Norimoto M, Kitajima T (1999) Stress relaxation of Sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung 53(5):541–546CrossRef Dwianto W, Morooka T, Norimoto M, Kitajima T (1999) Stress relaxation of Sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung 53(5):541–546CrossRef
Zurück zum Zitat Färber J, Lichtenegger HC (2001) Cellulose microfibirl angles in a spruce branch and mechanical implications. J Mater Sci 36(21):5087–5092CrossRef Färber J, Lichtenegger HC (2001) Cellulose microfibirl angles in a spruce branch and mechanical implications. J Mater Sci 36(21):5087–5092CrossRef
Zurück zum Zitat Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure reactions. Walter de Gruyter Press, Berlin and New York Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure reactions. Walter de Gruyter Press, Berlin and New York
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):1195–1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):1195–1203CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575CrossRef Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575CrossRef
Zurück zum Zitat Guo J, Song K, Salmén L, Yin Y (2015) Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohyd Polym 115:207–214CrossRef Guo J, Song K, Salmén L, Yin Y (2015) Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohyd Polym 115:207–214CrossRef
Zurück zum Zitat Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohyd Polym 135:248–255CrossRef Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohyd Polym 135:248–255CrossRef
Zurück zum Zitat Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11(9):2300–2305CrossRef Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11(9):2300–2305CrossRef
Zurück zum Zitat Inoue M, Norimoto M, Tahanashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235 Inoue M, Norimoto M, Tahanashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235
Zurück zum Zitat Ito Y, Tanahashi M, Shigematsu M, Shinoda Y (1998) Compressive-molding of wood by high-pressure steam-treatments. Part 2. Mechanism of permanent of fixation. Holzforschung 52(2):217–221CrossRef Ito Y, Tanahashi M, Shigematsu M, Shinoda Y (1998) Compressive-molding of wood by high-pressure steam-treatments. Part 2. Mechanism of permanent of fixation. Holzforschung 52(2):217–221CrossRef
Zurück zum Zitat Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28(26):8782–8787CrossRef Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28(26):8782–8787CrossRef
Zurück zum Zitat Jakob HF, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules 29(26):8435–8440CrossRef Jakob HF, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules 29(26):8435–8440CrossRef
Zurück zum Zitat Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246CrossRef Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246CrossRef
Zurück zum Zitat Kim D, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55(5):521–524CrossRef Kim D, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55(5):521–524CrossRef
Zurück zum Zitat Kulasinski K, Guyer R, Derome D, Carmeliet J (2015) Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface. Biomacromolecules 16(9):2972–2978CrossRef Kulasinski K, Guyer R, Derome D, Carmeliet J (2015) Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface. Biomacromolecules 16(9):2972–2978CrossRef
Zurück zum Zitat Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRef Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRef
Zurück zum Zitat Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD (2002) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298:389–392CrossRef Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD (2002) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298:389–392CrossRef
Zurück zum Zitat Lichtenegger HC, Schöberl T, Ruokolainen JT, Cross JO, Heald SM, Birkedal H, Waite HJ, Stucky GD (2003) Zinc and mechanical prowess in the jaws of Nereis, a marine worm. PNAS 100(16):9144–9149CrossRef Lichtenegger HC, Schöberl T, Ruokolainen JT, Cross JO, Heald SM, Birkedal H, Waite HJ, Stucky GD (2003) Zinc and mechanical prowess in the jaws of Nereis, a marine worm. PNAS 100(16):9144–9149CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
Zurück zum Zitat Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293CrossRef Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293CrossRef
Zurück zum Zitat Navi P, Heger F (2004) Combined densification and thermos-hydro-mechanical processing of wood. MRS Bull 29(5):332–336CrossRef Navi P, Heger F (2004) Combined densification and thermos-hydro-mechanical processing of wood. MRS Bull 29(5):332–336CrossRef
Zurück zum Zitat Navi P, Sandberg D (2011) Thermo-hydro-mechanical processing of wood. EPFL Press, Lausanne Navi P, Sandberg D (2011) Thermo-hydro-mechanical processing of wood. EPFL Press, Lausanne
Zurück zum Zitat Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRef Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, O’Neill H, Pingali SV, Harton S (2014) Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 21:1015–1024CrossRef Nishiyama Y, Langan P, O’Neill H, Pingali SV, Harton S (2014) Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 21:1015–1024CrossRef
Zurück zum Zitat Panshin AJ, Zeeuw CD (1970) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill series in forest resources, vol 1. McGraw-Hill College Press, Ontario Panshin AJ, Zeeuw CD (1970) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill series in forest resources, vol 1. McGraw-Hill College Press, Ontario
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef
Zurück zum Zitat Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11(4):1111–1117CrossRef Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11(4):1111–1117CrossRef
Zurück zum Zitat Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative poisson ratio of crystalline cellulose in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528CrossRef Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative poisson ratio of crystalline cellulose in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528CrossRef
Zurück zum Zitat Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79(9):2173–2184CrossRef Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79(9):2173–2184CrossRef
Zurück zum Zitat Rennhofer H, Puchegger S, Pabisch S, Rentenberger C, Li C, Siegel S, Steiger-Thirsfeld A, Paris O, Peterlik H (2014) The structural evolution of multi-layer graphene stacks in carbon fibers under load at high temperature—a synchrotron radiation study. Carbon 80:373–381CrossRef Rennhofer H, Puchegger S, Pabisch S, Rentenberger C, Li C, Siegel S, Steiger-Thirsfeld A, Paris O, Peterlik H (2014) The structural evolution of multi-layer graphene stacks in carbon fibers under load at high temperature—a synchrotron radiation study. Carbon 80:373–381CrossRef
Zurück zum Zitat Salmén NL, Back EL (1977) The influence of water on the glass phase transition temperature of cellulose. TAPPI 60(12):137–140 Salmén NL, Back EL (1977) The influence of water on the glass phase transition temperature of cellulose. TAPPI 60(12):137–140
Zurück zum Zitat Sandberg D, Haller P, Navi P (2013) Thermo-hydro and thermos-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater Sci Eng 8(1):64–88CrossRef Sandberg D, Haller P, Navi P (2013) Thermo-hydro and thermos-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater Sci Eng 8(1):64–88CrossRef
Zurück zum Zitat Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611CrossRef Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611CrossRef
Zurück zum Zitat Skyba O, Schwarze FWMR (2009) Physical and mechanical properties of thermos-hygro-mechanically (THM)-densified wood. Wood Res 54(2):1–18 Skyba O, Schwarze FWMR (2009) Physical and mechanical properties of thermos-hygro-mechanically (THM)-densified wood. Wood Res 54(2):1–18
Zurück zum Zitat Song K, Yin Y, Salmén L, Xiao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49(4):1734–1742CrossRef Song K, Yin Y, Salmén L, Xiao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49(4):1734–1742CrossRef
Zurück zum Zitat Sugiyama J, Okano T (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196–3198CrossRef Sugiyama J, Okano T (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196–3198CrossRef
Zurück zum Zitat Szeześniak L, Rachocki A, Tritt-Goe J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451CrossRef Szeześniak L, Rachocki A, Tritt-Goe J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451CrossRef
Zurück zum Zitat Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from Collenchyma. Plant Physiol 161(1):465–476CrossRef Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from Collenchyma. Plant Physiol 161(1):465–476CrossRef
Zurück zum Zitat Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20:633–643CrossRef Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20:633–643CrossRef
Zurück zum Zitat Wada M, Hori R, Kim U, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stabil 95(8):1330–1334CrossRef Wada M, Hori R, Kim U, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stabil 95(8):1330–1334CrossRef
Zurück zum Zitat Winandy JE (1994) Wood properties. Encycl Agricult Sci 4:549–561 Winandy JE (1994) Wood properties. Encycl Agricult Sci 4:549–561
Zurück zum Zitat Xu F, Shi Y, Wang D (2013) X-ray scattering studies of lignocellulosic biomass: a review. Carbohyd Polym 94:904–917CrossRef Xu F, Shi Y, Wang D (2013) X-ray scattering studies of lignocellulosic biomass: a review. Carbohyd Polym 94:904–917CrossRef
Zurück zum Zitat Yin Y, Berglund L, Salmén L (2011) Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12(1):194–202CrossRef Yin Y, Berglund L, Salmén L (2011) Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12(1):194–202CrossRef
Metadaten
Titel
The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering
verfasst von
Juan Guo
Harald Rennhofer
Yafang Yin
Helga C. Lichtenegger
Publikationsdatum
15.06.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0982-2

Weitere Artikel der Ausgabe 4/2016

Cellulose 4/2016 Zur Ausgabe