Skip to main content
Log in

Oxidation and structural changes in NMMO-regenerated cellulose films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Carbonyl and carboxyl groups introduced by oxidative processes during production and purification of celluloses determine intra- and intermolecular interactions and thus application-related bulk and surface properties of cellulosic materials. We report a comprehensive approach to the quantification of carboxyl and carbonyl groups in cellulose films upon reconstitution from NMMO solutions. Measurements of the excess conductivity were combined with the determination of the molecular weight distribution, quantification of the carboxyl and carbonyl group content, crystallinity and film swelling in aqueous solutions. TEMPO-oxidized, NMMO-regenerated cellulose films were additionally analysed as a reference system for extensive cellulose oxidation. Our reported data demonstrate that dissolution of cellulose in NMMO results in the formation of onic acids, chain degradation, increased ionization and film swelling, whereas TEMPO-oxidation introduced carbonyl groups as well as onic and uronic acids causing a significantly increased charging, ion accumulation and swelling even at higher crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe Y, Mochizuki A (2003) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. III. The relationship between the drying condition of the membrane and its permeation behavior. J Appl Polym Sci 89:1671–1681. doi:10.1002/app.12439

    Article  CAS  Google Scholar 

  • Adorjan I, Potthast A, Rosenau T, Sixta H, Kosma P (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: studies on model compounds and pulps. Cellulose 12:51–57. doi:10.1007/s10570-004-0212-1

    Article  CAS  Google Scholar 

  • Bohrn R, Potthast A, Rosenau T, Sixta H, Kosma P (2005) Synthesis and testing of a novel fluorescence label for carboxyls in carbohydrates and cellulosics. Synlett 20:3087–3090. doi:10.1055/s-2005-921923

    Google Scholar 

  • Bohrn R, Potthast A, Schiehser S, Rosenau T, Sixta H, Kosma P (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7:1743–1750. doi:10.1021/bm060039h

    Article  CAS  Google Scholar 

  • De Feijter JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface. Biopolymers 17:1758–1772. doi:10.1002/bip.1978.360170711

    Article  Google Scholar 

  • Delgado ÁV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309:194–224. doi:10.1016/j.jcis.2006.12.075

    Article  CAS  Google Scholar 

  • Dubé M, Deslandes Y, Marchesault RH (1984) Spherulitic precipitation of cellulose from amine-oxide solutions. J Polym Sci Polym Lett E 22:163–171. doi:10.1002/pol.1984.130220307

    Article  Google Scholar 

  • Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: What are the similarities and differences? Macromol Chem Phys 209:1240–1254. doi:10.1002/macp.200800021

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi:10.1016/S0079-6700(01)00025-9

    Article  CAS  Google Scholar 

  • Freudenberg U, Zschoche S, Simon F, Janke A, Schmidt K, Behrens SH, Auweter H, Werner C (2005) Covalent immobilization of cellulose layers onto maleic anhydride copolymer thin films. Biomacromolecules 6:1628–1634. doi:10.1021/bm0492529

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164. doi:10.1023/A:1009208603673

    Article  CAS  Google Scholar 

  • Jie X, Cao Y, Lin B, Yuan Q (2004) Gas permeation performance of cellulose hollow fiber membranes made from the cellulose/N-methylmorpholine-N-oxide/H2O system. J Appl Polym Sci 91:1873–1880. doi:10.1002/app.2385

    Article  CAS  Google Scholar 

  • Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107. doi:10.1016/j.polymer.2006.05.033

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1: fundamentals and analytical methods. Wiley, Weinheim

    Book  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278. doi:10.1021/ma60050a019

    Article  CAS  Google Scholar 

  • Li HJ, Cao YM, Qin JJ, Jie XM, Wang TH, Liu JH, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279:328–335. doi:10.1016/j.memsci.2005.12.025

    Article  CAS  Google Scholar 

  • Lide DR, Frederiske HPR (1995) CRC Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Liebner F, Potthast A, Haimer E, Wendland M, Rosenau T (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135. doi:10.1515/HF.2008.051

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Notley SM, Pettersson B, Wågberg L (2004) Direct measurement of attractive van der Waals’ Forces between regenerated cellulose surfaces in an aqueous environment. J Am Chem Soc 126:13930–13931. doi:10.1021/ja045992d

    Article  CAS  Google Scholar 

  • Ogieglo W, Wormeester H, Eichhorn KJ, Wessling M, Benes NE (2015) In situ ellipsometry studies on swelling of thin polymer films: a review. Prog Polym Sci 42:42–78. doi:10.1016/j.progpolymsci.2014.09.004

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi:10.1016/j.carres.2005.08.007

    Article  CAS  Google Scholar 

  • Potthast A, Röhrling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749. doi:10.1021/bm025759c

    Article  CAS  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Ebner G, Sixta H, Kosma P (2002a) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3:959–968. doi:10.1021/bm020029q

    Article  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002b) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3:969–975. doi:10.1021/bm020030p

    Article  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837. doi:10.1016/S0079-6700(01)00023-5

    Article  CAS  Google Scholar 

  • Sahin HT, Arslan MB (2008) A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int J Mol Sci 9:78–88. doi:10.3390/ijms9010078

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Tahiri C, Mignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188. doi:10.1023/A:1009276009711

    Article  CAS  Google Scholar 

  • Yokota S, Kitaoka T, Opietnik M, Rosenau T, Wariishi H (2008) Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates. Angew Chem Int Ed 47:9866–9869. doi:10.1002/anie.200803922

    Article  CAS  Google Scholar 

  • Zimmermann R, Dukhin SS, Werner C, Duval JFL (2013) On the use of electrokinetics for unraveling charging and structure of soft planar polymer films. Curr Opin Colloid Interface Sci 18:83–92. doi:10.1016/j.cocis.2013.02.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Austrian Christian Doppler Research Society (Lab for “Advanced Cellulose Chemistry and Analytics” at BOKU University Vienna) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Zimmermann.

Additional information

Ralf Zimmermann and Yvonne Müller have equally contributed to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, R., Müller, Y., Freudenberg, U. et al. Oxidation and structural changes in NMMO-regenerated cellulose films. Cellulose 23, 3535–3541 (2016). https://doi.org/10.1007/s10570-016-1084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1084-x

Keywords

Navigation