Skip to main content
Erschienen in: Cellulose 2/2017

28.11.2016 | Original Paper

Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation

verfasst von: Andreia Fonseca de Faria, Ana Carolina Mazarin de Moraes, Patricia Fernanda Andrade, Douglas Soares da Silva, Maria do Carmo Gonçalves, Oswaldo Luiz Alves

Erschienen in: Cellulose | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial adhesion and consequent biofilm formation are one the biggest hurdles in membrane-based technologies. Due to numerous problems associated with bacterial colonization on membrane surfaces, the development of new approaches to prevent microbial growth has been encouraged. Graphene oxide, produced by the chemical exfoliation of graphite, is a highly water-dispersible nanomaterial which has been used as a platform for the anchoring of nanoparticles and bioactive molecules. In this present study, we propose the fabrication of antimicrobial membranes through the incorporation of graphene oxide-silver nanocomposites into a cellulose acetate polymeric matrix. Transmission electron microscopy, Raman, and UV–visible diffuse reflectance spectroscopy measurements confirmed the presence of graphene oxide-silver sheets in the modified membranes. In comparison to pristine membranes, membranes containing graphene oxide-silver nanocomposites showed larger surface pores and increased pure water flux. In addition, membranes embedded with graphene oxide-silver presented strong antibacterial activity, being able to inactivate adhered bacteria at a rate of 90% compared to pristine cellulose acetate membranes. Our results strongly suggest that the incorporation of graphene oxide-silver nanocomposites to cellulose acetate is a promising strategy to produce membranes that are able to minimize bacterial attachment and growth.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318. doi:10.1016/S0927-7765(02)00174-1 CrossRef Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318. doi:10.​1016/​S0927-7765(02)00174-1 CrossRef
Zurück zum Zitat Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.1021/jp200686k CrossRef Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.​1021/​jp200686k CrossRef
Zurück zum Zitat Andrade PF, Faria AF, Quites FJ, Oliveira SR, Alves OL, Arruda MAZ, Gonçalves dMC (2015b) Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles. Cellulose 22:3895–3906. doi:10.1007/s10570-015-0752-6 CrossRef Andrade PF, Faria AF, Quites FJ, Oliveira SR, Alves OL, Arruda MAZ, Gonçalves dMC (2015b) Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles. Cellulose 22:3895–3906. doi:10.​1007/​s10570-015-0752-6 CrossRef
Zurück zum Zitat Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273:72–80. doi:10.1016/j.desal.2010.11.010 CrossRef Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273:72–80. doi:10.​1016/​j.​desal.​2010.​11.​010 CrossRef
Zurück zum Zitat Cai X et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 50:3407–3415. doi:10.1016/j.carbon.2012.02.002 CrossRef Cai X et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 50:3407–3415. doi:10.​1016/​j.​carbon.​2012.​02.​002 CrossRef
Zurück zum Zitat Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2010) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B 1:16–22. doi:10.1016/j.colsurfb.2010.10.033 Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2010) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B 1:16–22. doi:10.​1016/​j.​colsurfb.​2010.​10.​033
Zurück zum Zitat de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL (2014a) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124. doi:10.1016/j.colsurfb.2013.08.006 CrossRef de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL (2014a) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124. doi:10.​1016/​j.​colsurfb.​2013.​08.​006 CrossRef
Zurück zum Zitat de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL (2014b) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124. doi:10.1016/j.colsurfb.2013.08.006 CrossRef de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL (2014b) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124. doi:10.​1016/​j.​colsurfb.​2013.​08.​006 CrossRef
Zurück zum Zitat de Faria AF, Perreault F, Shaulsky E, Arias Chavez LH, Elimelech M (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.1021/acsami.5b01639 CrossRef de Faria AF, Perreault F, Shaulsky E, Arias Chavez LH, Elimelech M (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.​1021/​acsami.​5b01639 CrossRef
Zurück zum Zitat Elimelech M, Xiaohua Z, Childress AE, Seungkwan H (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci 127:101–109. doi:10.1016/S0376-7388(96)00351-1 CrossRef Elimelech M, Xiaohua Z, Childress AE, Seungkwan H (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci 127:101–109. doi:10.​1016/​S0376-7388(96)00351-1 CrossRef
Zurück zum Zitat Faria AF et al (2012) Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 24:4080–4087. doi:10.1021/cm301939s CrossRef Faria AF et al (2012) Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 24:4080–4087. doi:10.​1021/​cm301939s CrossRef
Zurück zum Zitat Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842. doi:10.1021/jp909284g CrossRef Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842. doi:10.​1021/​jp909284g CrossRef
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
Zurück zum Zitat Hummers WS, Offman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
Zurück zum Zitat Jayalakshmi A, Kim I-C, Kwon Y-N (2015) Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling. RSC Adv 5:48290–48300. doi:10.1039/C5RA03499J CrossRef Jayalakshmi A, Kim I-C, Kwon Y-N (2015) Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling. RSC Adv 5:48290–48300. doi:10.​1039/​C5RA03499J CrossRef
Zurück zum Zitat Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008a) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi:10.1016/j.watres.2008.08.015 CrossRef Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008a) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi:10.​1016/​j.​watres.​2008.​08.​015 CrossRef
Zurück zum Zitat Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013) Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens Bioelectron 42:198–206. doi:10.1016/j.bios.2012.10.029 CrossRef Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013) Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens Bioelectron 42:198–206. doi:10.​1016/​j.​bios.​2012.​10.​029 CrossRef
Zurück zum Zitat Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRef Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRef
Zurück zum Zitat Liu L, Wang Y, Yan X, Sun DD (2011a) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35:1418–1423. doi:10.1039/C1NJ20076C CrossRef Liu L, Wang Y, Yan X, Sun DD (2011a) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35:1418–1423. doi:10.​1039/​C1NJ20076C CrossRef
Zurück zum Zitat Liu S et al (2011b) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.1021/nn202451x CrossRef Liu S et al (2011b) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.​1021/​nn202451x CrossRef
Zurück zum Zitat Mansouri J, Harrisson S, Chen V (2010) Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem 20:4567–4586. doi:10.1039/B926440J CrossRef Mansouri J, Harrisson S, Chen V (2010) Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem 20:4567–4586. doi:10.​1039/​B926440J CrossRef
Zurück zum Zitat Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y CrossRef Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.​1007/​s11051-010-9900-y CrossRef
Zurück zum Zitat Nguyen T, Roddick AF, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes. doi:10.3390/membranes2040804 Nguyen T, Roddick AF, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes. doi:10.​3390/​membranes2040804​
Zurück zum Zitat Orth ES, Fonsaca JES, Domingues SH, Mehl H, Oliveira MM, Zarbin AJG (2013) Targeted thiolation of graphene oxide and its utilization as precursor for graphene/silver nanoparticles composites. Carbon 61:543–550. doi:10.1016/j.carbon.2013.05.032 CrossRef Orth ES, Fonsaca JES, Domingues SH, Mehl H, Oliveira MM, Zarbin AJG (2013) Targeted thiolation of graphene oxide and its utilization as precursor for graphene/silver nanoparticles composites. Carbon 61:543–550. doi:10.​1016/​j.​carbon.​2013.​05.​032 CrossRef
Zurück zum Zitat Pasmore M, Todd P, Smith S, Baker D, Silverstein J, Coons D, Bowman CN (2001) Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J Membr Sci 194:15–32. doi:10.1016/S0376-7388(01)00468-9 CrossRef Pasmore M, Todd P, Smith S, Baker D, Silverstein J, Coons D, Bowman CN (2001) Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J Membr Sci 194:15–32. doi:10.​1016/​S0376-7388(01)00468-9 CrossRef
Zurück zum Zitat Ramanathan T et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nano 3:327–331CrossRef Ramanathan T et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nano 3:327–331CrossRef
Zurück zum Zitat Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44:4583–4589. doi:10.1021/es1005785 CrossRef Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44:4583–4589. doi:10.​1021/​es1005785 CrossRef
Zurück zum Zitat Rodrigues-Filho UP, Gushikem Y, Gonçalves MdC, Cachichi RC, de Castro SC (1996) Composite membranes of cellulose acetate and zirconium dioxide: preparation and study of physicochemical characteristics. Chem Mater 8:1375–1379. doi:10.1021/cm950528g CrossRef Rodrigues-Filho UP, Gushikem Y, Gonçalves MdC, Cachichi RC, de Castro SC (1996) Composite membranes of cellulose acetate and zirconium dioxide: preparation and study of physicochemical characteristics. Chem Mater 8:1375–1379. doi:10.​1021/​cm950528g CrossRef
Zurück zum Zitat Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revelead: stripping the oxidative debris from the graphene-like sheets. Angew Chem 50:3173–3177CrossRef Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revelead: stripping the oxidative debris from the graphene-like sheets. Angew Chem 50:3173–3177CrossRef
Zurück zum Zitat Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.1039/C5EN00086F CrossRef Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.​1039/​C5EN00086F CrossRef
Zurück zum Zitat Tang J et al (2013) Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5:3867–3874. doi:10.1021/am4005495 CrossRef Tang J et al (2013) Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5:3867–3874. doi:10.​1021/​am4005495 CrossRef
Zurück zum Zitat Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nano 4:25–29CrossRef Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nano 4:25–29CrossRef
Zurück zum Zitat Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef
Zurück zum Zitat Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75. doi:10.1016/j.geoderma.2005.03.007 CrossRef Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75. doi:10.​1016/​j.​geoderma.​2005.​03.​007 CrossRef
Zurück zum Zitat Xu W-P et al (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21:4593–4597. doi:10.1039/C0JM03376F CrossRef Xu W-P et al (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21:4593–4597. doi:10.​1039/​C0JM03376F CrossRef
Zurück zum Zitat Zhou X et al (2009a) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846. doi:10.1021/jp903821n CrossRef Zhou X et al (2009a) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846. doi:10.​1021/​jp903821n CrossRef
Zurück zum Zitat Zhou X et al (2009b) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846. doi:10.1021/jp903821n CrossRef Zhou X et al (2009b) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846. doi:10.​1021/​jp903821n CrossRef
Zurück zum Zitat Zhu X, Elimelech M (1997) Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms. Environ Sci Technol 31:3654–3662. doi:10.1021/es970400v CrossRef Zhu X, Elimelech M (1997) Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms. Environ Sci Technol 31:3654–3662. doi:10.​1021/​es970400v CrossRef
Zurück zum Zitat Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5:4529–4536. doi:10.1021/nn200088x CrossRef Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5:4529–4536. doi:10.​1021/​nn200088x CrossRef
Zurück zum Zitat Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723. doi:10.1016/j.watres.2008.11.014 CrossRef Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723. doi:10.​1016/​j.​watres.​2008.​11.​014 CrossRef
Metadaten
Titel
Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation
verfasst von
Andreia Fonseca de Faria
Ana Carolina Mazarin de Moraes
Patricia Fernanda Andrade
Douglas Soares da Silva
Maria do Carmo Gonçalves
Oswaldo Luiz Alves
Publikationsdatum
28.11.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1140-6

Weitere Artikel der Ausgabe 2/2017

Cellulose 2/2017 Zur Ausgabe