Skip to main content
Erschienen in: Cellulose 11/2017

18.08.2017 | Original Paper

Influence of cation on the cellulose dissolution investigated by MD simulation and experiments

verfasst von: Sen Wang, Kangjie Lyu, Peng Sun, Ang Lu, Maili Liu, Lin Zhuang, Lina Zhang

Erschienen in: Cellulose | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose is the most abundant natural polymer on the earth, and effective solvents are essential for its wide application. Among various solvents such as alkali/urea or ionic liquids, cations all play a very important role on the cellulose dissolution. In this work, the influence of cation on the cellulose dissolution in alkali/urea via a cooling process was investigated with a combination of MD simulation and experiments, including differential scanning calorimetry (DSC) and NMR diffusometry (PFG-SE NMR). The results of DSC proved that the dissolution of cellulose in both solvents was a process within a temperature range, starting at above 0 °C and completing at low temperature (−5 °C for LiOH/urea and −20 °C for NaOH/urea), indicating the necessity of low temperature for the cellulose dissolution. Molecular dynamic (MD) simulation suggested that the electrostatic force between OH and cellulose dominated the inter-molecular interactions. In our findings, Li+ could penetrate closer to cellulose, and displayed stronger electrostatic interaction with the biomacromolecule than Na+, thus possessed a greater “stabilizing” effect on the OH/cellulose interaction. PFG-SE NMR demonstrated a more significant binding fraction of Li+ than Na+ to cellulose, which was consistent with MD. These results indicated that the direct interactions existed between the cations and cellulose, and Li+ exhibited stronger interaction with cellulose, leading to stronger dissolving power.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bergenstråhle-Wohlert M, Berglund LA, Brady JW et al (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12. doi:10.1007/s10570-011-9616-x CrossRef Bergenstråhle-Wohlert M, Berglund LA, Brady JW et al (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12. doi:10.​1007/​s10570-011-9616-x CrossRef
Zurück zum Zitat Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351CrossRef Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351CrossRef
Zurück zum Zitat Chrapava S, Touraud D, Rosenau T et al (2003) The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Phys Chem Chem Phys 5:1842–1847. doi:10.1039/B212665F CrossRef Chrapava S, Touraud D, Rosenau T et al (2003) The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Phys Chem Chem Phys 5:1842–1847. doi:10.​1039/​B212665F CrossRef
Zurück zum Zitat Esaki K, Yokota S, Egusa S et al (2009) Preparation of lactose-modified cellulose films by a nonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold for cell culture. Biomacromol 10:1265–1269CrossRef Esaki K, Yokota S, Egusa S et al (2009) Preparation of lactose-modified cellulose films by a nonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold for cell culture. Biomacromol 10:1265–1269CrossRef
Zurück zum Zitat Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
Zurück zum Zitat Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. doi:10.1021/ct700301q CrossRef Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. doi:10.​1021/​ct700301q CrossRef
Zurück zum Zitat Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869 CrossRef Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.​1063/​1.​445869 CrossRef
Zurück zum Zitat Kamide K, Kowsaka K, Okajima K (1985) Determination of intramolecular hydrogen bonds and selective coordination of sodium cation in alkalicellulose by CP/MASS 13C NMR. Polym J 17:707–711CrossRef Kamide K, Kowsaka K, Okajima K (1985) Determination of intramolecular hydrogen bonds and selective coordination of sodium cation in alkalicellulose by CP/MASS 13C NMR. Polym J 17:707–711CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
Zurück zum Zitat Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRef Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRef
Zurück zum Zitat Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J Phys Chem B 110:3308–3322. doi:10.1021/jp056043p CrossRef Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J Phys Chem B 110:3308–3322. doi:10.​1021/​jp056043p CrossRef
Zurück zum Zitat Li P, Song LF, Merz KM (2015a) Systematic parameterization of monovalent ions employing the nonbonded model. J Chem Theory Comput 11:1645–1657. doi:10.1021/ct500918t CrossRef Li P, Song LF, Merz KM (2015a) Systematic parameterization of monovalent ions employing the nonbonded model. J Chem Theory Comput 11:1645–1657. doi:10.​1021/​ct500918t CrossRef
Zurück zum Zitat Li Y, Liu X, Zhang S et al (2015c) Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 17:17894–17905. doi:10.1039/C5CP02009C CrossRef Li Y, Liu X, Zhang S et al (2015c) Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 17:17894–17905. doi:10.​1039/​C5CP02009C CrossRef
Zurück zum Zitat Luo N, Lv Y, Wang D et al (2012) Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. Chem Commun 48:6283–6285. doi:10.1039/C2CC31483E CrossRef Luo N, Lv Y, Wang D et al (2012) Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. Chem Commun 48:6283–6285. doi:10.​1039/​C2CC31483E CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319 CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.​1021/​ja0257319 CrossRef
Zurück zum Zitat Payal RS, Balasubramanian S (2014) Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study. Phys Chem Chem Phys 16:17458–17465. doi:10.1039/C4CP02219J CrossRef Payal RS, Balasubramanian S (2014) Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study. Phys Chem Chem Phys 16:17458–17465. doi:10.​1039/​C4CP02219J CrossRef
Zurück zum Zitat Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef
Zurück zum Zitat Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775. doi:10.1039/C4CP04060K CrossRef Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775. doi:10.​1039/​C4CP04060K CrossRef
Zurück zum Zitat Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837CrossRef Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837CrossRef
Zurück zum Zitat Rosenau T, Potthast A, Adorjan I et al (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291CrossRef Rosenau T, Potthast A, Adorjan I et al (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291CrossRef
Zurück zum Zitat Swatloski RP, Spear SK, Holbrey JD, Rogers Robin D (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers Robin D (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef
Zurück zum Zitat Wang S, Sun P, Liu M et al (2017a) Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Phys Chem Chem Phys 19:17909–17917. doi:10.1039/C7CP02514A CrossRef Wang S, Sun P, Liu M et al (2017a) Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Phys Chem Chem Phys 19:17909–17917. doi:10.​1039/​C7CP02514A CrossRef
Zurück zum Zitat Wang S, Sun P, Zhang R et al (2017b) Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Phys Chem Chem Phys 19:7486–7490. doi:10.1039/C6CP08744B CrossRef Wang S, Sun P, Zhang R et al (2017b) Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Phys Chem Chem Phys 19:7486–7490. doi:10.​1039/​C6CP08744B CrossRef
Zurück zum Zitat Xiong B, Zhao P, Cai P et al (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621CrossRef Xiong B, Zhao P, Cai P et al (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621CrossRef
Zurück zum Zitat Yamashiki T, Kamide K, Okajima K et al (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l-1) which possess maximum solubility power against cellulose. Polym J 20:447–457CrossRef Yamashiki T, Kamide K, Okajima K et al (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l-1) which possess maximum solubility power against cellulose. Polym J 20:447–457CrossRef
Zurück zum Zitat Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.1039/C5CP05744B CrossRef Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.​1039/​C5CP05744B CrossRef
Zurück zum Zitat Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci, Part B: Polym Phys 40:1521–1529. doi:10.1002/polb.10215 CrossRef Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci, Part B: Polym Phys 40:1521–1529. doi:10.​1002/​polb.​10215 CrossRef
Zurück zum Zitat Zhang J, Zhang H, Wu J et al (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947. doi:10.1039/B920446F CrossRef Zhang J, Zhang H, Wu J et al (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947. doi:10.​1039/​B920446F CrossRef
Metadaten
Titel
Influence of cation on the cellulose dissolution investigated by MD simulation and experiments
verfasst von
Sen Wang
Kangjie Lyu
Peng Sun
Ang Lu
Maili Liu
Lin Zhuang
Lina Zhang
Publikationsdatum
18.08.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 11/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1456-x

Weitere Artikel der Ausgabe 11/2017

Cellulose 11/2017 Zur Ausgabe