Skip to main content
Erschienen in: Cellulose 1/2018

13.11.2017 | Original Paper

Chitosan/partially sulfonated poly(vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications

verfasst von: V. Vijayalekshmi, Dipak Khastgir

Erschienen in: Cellulose | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel proton exchange membranes composed of a blend of chitosan and sulfonated polyvinylidene fluoride (SPVDF) was prepared by solution casting technique. The PVDF was sulfonated using direct sulfonation method with sulfonation degree of 6.1%. The membranes with different fractions of SPVDF were prepared and 10 wt% SPVDF exhibits the best performance in terms of ion exchange capacity, conductivity, water uptake and membrane selectivity. The prepared blend membranes show excellent combination of thermal stability, mechanical properties, dimensional stability and methanol barrier properties. Chitosan (CS)-SPVDF-90/10 membrane shows the highest proton conductivity of 2.85 × 10−2 S cm−1 at 90 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bai H, Wang X, Zhou Y, Zhang L (2012) Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog Nat Sci Mater Int 22:250–257CrossRef Bai H, Wang X, Zhou Y, Zhang L (2012) Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog Nat Sci Mater Int 22:250–257CrossRef
Zurück zum Zitat Bakangura E, Ge L, Muhammad M, Pan J, Wu L, Xu T (2015) Sandwich structure SPPO/BPPO proton exchange membranes for fuel cells: morphology–electrochemical properties relationship. J Membr Sci 475:30–38CrossRef Bakangura E, Ge L, Muhammad M, Pan J, Wu L, Xu T (2015) Sandwich structure SPPO/BPPO proton exchange membranes for fuel cells: morphology–electrochemical properties relationship. J Membr Sci 475:30–38CrossRef
Zurück zum Zitat Bhagabati P, Chaki TK, Khastgir D (2015) One-step in situ modification of halloysite nanotubes: augmentation in polymer–filler interface adhesion in nanocomposites. Ind Eng Chem Res 54:6698–6712CrossRef Bhagabati P, Chaki TK, Khastgir D (2015) One-step in situ modification of halloysite nanotubes: augmentation in polymer–filler interface adhesion in nanocomposites. Ind Eng Chem Res 54:6698–6712CrossRef
Zurück zum Zitat Chakrabarty T, Singh AK, Shahi VK (2012) Zwitterionic silica copolymer based crosslinked organic–inorganic hybrid polymer electrolyte membranes for fuel cell applications. RSC Adv 2:1949CrossRef Chakrabarty T, Singh AK, Shahi VK (2012) Zwitterionic silica copolymer based crosslinked organic–inorganic hybrid polymer electrolyte membranes for fuel cell applications. RSC Adv 2:1949CrossRef
Zurück zum Zitat Che Q, Zhou L, Wang J (2015) Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes. J Mol Liq 206:10–18CrossRef Che Q, Zhou L, Wang J (2015) Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes. J Mol Liq 206:10–18CrossRef
Zurück zum Zitat Chen CY, Garnica Rodriguez JI, Duke MC, Costa RFD, Dicks AL, Da Costa JCD (2007) Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. J Power Sources 166:324–330CrossRef Chen CY, Garnica Rodriguez JI, Duke MC, Costa RFD, Dicks AL, Da Costa JCD (2007) Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. J Power Sources 166:324–330CrossRef
Zurück zum Zitat De Alvarenga ES (2011) Biotechnol biopolym. In: Elnashar M (ed) Characterization and properties of Chitosan. InTech, London, pp 91–108 De Alvarenga ES (2011) Biotechnol biopolym. In: Elnashar M (ed) Characterization and properties of Chitosan. InTech, London, pp 91–108
Zurück zum Zitat Dutta K, Das S, Kundu PP (2016) Effect of the presence of partially sulfonated polyaniline on the proton and methanol transport behavior of partially sulfonated PVdF membrane. Polym J 48:301–309CrossRef Dutta K, Das S, Kundu PP (2016) Effect of the presence of partially sulfonated polyaniline on the proton and methanol transport behavior of partially sulfonated PVdF membrane. Polym J 48:301–309CrossRef
Zurück zum Zitat Farrokhzad H, Darvishmanesh S, Genduso G, Van Gerven T, Van Der Bruggen B (2015a) Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. Electrochim Acta 158:64–72CrossRef Farrokhzad H, Darvishmanesh S, Genduso G, Van Gerven T, Van Der Bruggen B (2015a) Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. Electrochim Acta 158:64–72CrossRef
Zurück zum Zitat Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Van der Bruggen B (2015b) Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. J Membr Sci 474:167–174CrossRef Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Van der Bruggen B (2015b) Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. J Membr Sci 474:167–174CrossRef
Zurück zum Zitat Gil M, Ji X, Li X, Na H, Eric JH, Lu Y (2004) Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications. J Membr Sci 234:75–81CrossRef Gil M, Ji X, Li X, Na H, Eric JH, Lu Y (2004) Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications. J Membr Sci 234:75–81CrossRef
Zurück zum Zitat Gumusoglu T, Ari GA, Deligoz H (2011) Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. J Membr Sci 376:25–34CrossRef Gumusoglu T, Ari GA, Deligoz H (2011) Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. J Membr Sci 376:25–34CrossRef
Zurück zum Zitat Hietala S, Holmberg S, Karjalainen M, Nasman J, Paromen M, Serimaa R, Sundholm F, Vahvas S (1997) Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes. J Mater Chem 7:721–726CrossRef Hietala S, Holmberg S, Karjalainen M, Nasman J, Paromen M, Serimaa R, Sundholm F, Vahvas S (1997) Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes. J Mater Chem 7:721–726CrossRef
Zurück zum Zitat Kanakasabai P, Vijay P, Deshpande AP, Varughese S (2011) Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications-surface energy characteristics and proton conductivity. J Power Sources 196:946–955CrossRef Kanakasabai P, Vijay P, Deshpande AP, Varughese S (2011) Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications-surface energy characteristics and proton conductivity. J Power Sources 196:946–955CrossRef
Zurück zum Zitat Kang G, Cao Y (2014) Application and modi fi cation of poly(vinylidene fluoride) (PVDF) membranes—a review. J Membr Sci 463:145–165CrossRef Kang G, Cao Y (2014) Application and modi fi cation of poly(vinylidene fluoride) (PVDF) membranes—a review. J Membr Sci 463:145–165CrossRef
Zurück zum Zitat Kang MS, Kim JH, Won J, Moon SH, Kang YS (2005) Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells. J Membr Sci 247:127–135CrossRef Kang MS, Kim JH, Won J, Moon SH, Kang YS (2005) Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells. J Membr Sci 247:127–135CrossRef
Zurück zum Zitat Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193CrossRef Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193CrossRef
Zurück zum Zitat Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130CrossRef Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130CrossRef
Zurück zum Zitat Lanceros Mendez S, Mano JF, Costa AM, Schmidt VH (2001) Ftir and DSC studies of mechanically deformed Β-PVDF films. J Macromol Sci Part B 40:517–527CrossRef Lanceros Mendez S, Mano JF, Costa AM, Schmidt VH (2001) Ftir and DSC studies of mechanically deformed Β-PVDF films. J Macromol Sci Part B 40:517–527CrossRef
Zurück zum Zitat Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226:159–167CrossRef Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226:159–167CrossRef
Zurück zum Zitat Li C, Wang L, Wang X et al (2017) Synthesis of PVDF-g-PSSA proton exchange membrane by ozone-induced graft copolymerization and its application in microbial fuel cells. J Membr Sci 527:35–42CrossRef Li C, Wang L, Wang X et al (2017) Synthesis of PVDF-g-PSSA proton exchange membrane by ozone-induced graft copolymerization and its application in microbial fuel cells. J Membr Sci 527:35–42CrossRef
Zurück zum Zitat Lin CW, Thangamuthu R, Yang CJ (2005) Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. J Membr Sci 253:23–31CrossRef Lin CW, Thangamuthu R, Yang CJ (2005) Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. J Membr Sci 253:23–31CrossRef
Zurück zum Zitat Liu Q, Song L, Zhang Z, Liu X (2010) Preparation and characterization of the PVDF—based composite membrane for direct methanol fuel cells. Int J Energy Environ 1:643–656 Liu Q, Song L, Zhang Z, Liu X (2010) Preparation and characterization of the PVDF—based composite membrane for direct methanol fuel cells. Int J Energy Environ 1:643–656
Zurück zum Zitat Liu F, Hashim NA, Liu Y, Moghareh A, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27CrossRef Liu F, Hashim NA, Liu Y, Moghareh A, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27CrossRef
Zurück zum Zitat Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975CrossRef Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975CrossRef
Zurück zum Zitat Ma W, Yuan H, Wang X (2014) The effect of chain structures on the crystallization behavior and membrane formation of poly(vinylidene fluoride) copolymers. Membranes 4:243–256CrossRef Ma W, Yuan H, Wang X (2014) The effect of chain structures on the crystallization behavior and membrane formation of poly(vinylidene fluoride) copolymers. Membranes 4:243–256CrossRef
Zurück zum Zitat Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinothe Pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47CrossRef Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinothe Pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47CrossRef
Zurück zum Zitat Mukoma P, Jooste BR, Vosloo HCM (2004) Synthesi and characterization of cross-linked chitosan membranes for application as alternative proton exchange materials in fuel cells. J Power Source 136:16–23CrossRef Mukoma P, Jooste BR, Vosloo HCM (2004) Synthesi and characterization of cross-linked chitosan membranes for application as alternative proton exchange materials in fuel cells. J Power Source 136:16–23CrossRef
Zurück zum Zitat Muthumeenal A, Neelakandan S, Kanagaraj P, Nagendran A (2016) Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renew Energy 86:922–929CrossRef Muthumeenal A, Neelakandan S, Kanagaraj P, Nagendran A (2016) Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renew Energy 86:922–929CrossRef
Zurück zum Zitat Osifo PO, Masala A (2012) The influence of chitosan membrane properties for direct methanol fuel cell applications. J Fuel Cell Sci Technol 9:1–9CrossRef Osifo PO, Masala A (2012) The influence of chitosan membrane properties for direct methanol fuel cell applications. J Fuel Cell Sci Technol 9:1–9CrossRef
Zurück zum Zitat Pandey RP, Shahi VK (2014) A N-o-sulphonic acid benzyl chitosan (NSBC) and N,N-dimethylene phosphonic acid propylsilane graphene oxide (NMPSGO) based multi-functional polymer electrolyte membrane with enhanced water retention and conductivity. RSC Adv 4:57200–57209CrossRef Pandey RP, Shahi VK (2014) A N-o-sulphonic acid benzyl chitosan (NSBC) and N,N-dimethylene phosphonic acid propylsilane graphene oxide (NMPSGO) based multi-functional polymer electrolyte membrane with enhanced water retention and conductivity. RSC Adv 4:57200–57209CrossRef
Zurück zum Zitat Pierog M, Gierszewska Drozynska M, Ostrowska Czubenko J (2009) Effect of ionic crosslinking agents on swelling behavior of chitosan hydrogel membranes. Prog Chem Appl Chitin Deriv 14:75–82 Pierog M, Gierszewska Drozynska M, Ostrowska Czubenko J (2009) Effect of ionic crosslinking agents on swelling behavior of chitosan hydrogel membranes. Prog Chem Appl Chitin Deriv 14:75–82
Zurück zum Zitat Rajesh S, Fauzi Ismail A, Mohan DR (2012) Structure–property interplay of poly(amide-imide) and TiO2 nanoparticles impregnated poly(ether-sulfone) asymmetric nanofiltration membranes. RSC Adv 2:6854CrossRef Rajesh S, Fauzi Ismail A, Mohan DR (2012) Structure–property interplay of poly(amide-imide) and TiO2 nanoparticles impregnated poly(ether-sulfone) asymmetric nanofiltration membranes. RSC Adv 2:6854CrossRef
Zurück zum Zitat Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef
Zurück zum Zitat Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056CrossRef Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056CrossRef
Zurück zum Zitat Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A (2014) Investigation of proton conductivity of anhydrous proton exchange membranes prepared via grafting vinyltriazole onto alkaline-treated PVDF. J Polym Sci, Part A: Polym Chem 52:1885–1897CrossRef Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A (2014) Investigation of proton conductivity of anhydrous proton exchange membranes prepared via grafting vinyltriazole onto alkaline-treated PVDF. J Polym Sci, Part A: Polym Chem 52:1885–1897CrossRef
Zurück zum Zitat Vijayalekshmi V, Khastgir D (2017) Eco-friendly methanesulfonic acid and sodium salt of dodecyl benzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J Membr Sci 523:45–59CrossRef Vijayalekshmi V, Khastgir D (2017) Eco-friendly methanesulfonic acid and sodium salt of dodecyl benzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J Membr Sci 523:45–59CrossRef
Zurück zum Zitat Vijayalekshmi V, Khastgir D (2018) Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells. Carbohydr Polym 179:152–163CrossRef Vijayalekshmi V, Khastgir D (2018) Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells. Carbohydr Polym 179:152–163CrossRef
Zurück zum Zitat Wootthikanokkhan J, Seeponkai N (2006) Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J Appl Polym Sci 102:5941–5947CrossRef Wootthikanokkhan J, Seeponkai N (2006) Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J Appl Polym Sci 102:5941–5947CrossRef
Zurück zum Zitat Wu Y, Seo T, Sasaki T, Irie S, Sakurai K (2006) Layered structures of hydrophobically modified chitosan derivatives. Carbohydr Polym 63:493–499CrossRef Wu Y, Seo T, Sasaki T, Irie S, Sakurai K (2006) Layered structures of hydrophobically modified chitosan derivatives. Carbohydr Polym 63:493–499CrossRef
Zurück zum Zitat Xiang Y, Yang M, Guo Z, Cui Z (2009) Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J Membr Sci 337:318–323CrossRef Xiang Y, Yang M, Guo Z, Cui Z (2009) Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J Membr Sci 337:318–323CrossRef
Zurück zum Zitat Xu T, Hou W, Shen X, Xu T, Hou W, Jiang Z (2011) Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. J Power Sources 196:4934–4942CrossRef Xu T, Hou W, Shen X, Xu T, Hou W, Jiang Z (2011) Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. J Power Sources 196:4934–4942CrossRef
Zurück zum Zitat Yang J, Wang XL, Tian Y, Lin Y, Tian F (2010) Morphologies and crystalline forms of polyvinylidene fluoride membranes prepared in different diluents by thermally induced phase separation. J Polym Sci, Part B: Polym Phys 48:2468–2475CrossRef Yang J, Wang XL, Tian Y, Lin Y, Tian F (2010) Morphologies and crystalline forms of polyvinylidene fluoride membranes prepared in different diluents by thermally induced phase separation. J Polym Sci, Part B: Polym Phys 48:2468–2475CrossRef
Zurück zum Zitat Yang H, Wu H, Shen XH, Cao Y, Li Z, Jiang Z (2015) Enhanced proton conductivity of proton exchange membrane at low humidity based on poly(methacrylic acid)-loaded imidazole microcapsules. Rsc Adv 5:9079–9088CrossRef Yang H, Wu H, Shen XH, Cao Y, Li Z, Jiang Z (2015) Enhanced proton conductivity of proton exchange membrane at low humidity based on poly(methacrylic acid)-loaded imidazole microcapsules. Rsc Adv 5:9079–9088CrossRef
Zurück zum Zitat Yavuz AG, Uygun A, Bhethanabotla VR (2009) Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing. Carbohydr Polym 75:448–453CrossRef Yavuz AG, Uygun A, Bhethanabotla VR (2009) Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing. Carbohydr Polym 75:448–453CrossRef
Zurück zum Zitat Yilmazturk S, Deligoz H, Yilmazoglu M, Damyan H, Oksuzomer F, Naci Koc S, Durmus A, Gurkaynak MA (2009) A novel approach for highly proton conductive electrolyte membranes with improved methanol barrier properties: Layer-by-Layer assembly of salt containing polyelectrolytes. J Membr Sci 343:137–146CrossRef Yilmazturk S, Deligoz H, Yilmazoglu M, Damyan H, Oksuzomer F, Naci Koc S, Durmus A, Gurkaynak MA (2009) A novel approach for highly proton conductive electrolyte membranes with improved methanol barrier properties: Layer-by-Layer assembly of salt containing polyelectrolytes. J Membr Sci 343:137–146CrossRef
Metadaten
Titel
Chitosan/partially sulfonated poly(vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications
verfasst von
V. Vijayalekshmi
Dipak Khastgir
Publikationsdatum
13.11.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1565-6

Weitere Artikel der Ausgabe 1/2018

Cellulose 1/2018 Zur Ausgabe