Skip to main content
Erschienen in: Cellulose 7/2019

28.03.2019 | Original Research

Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA

verfasst von: Mohammad M. Hassan, Marie J. Le Guen, Nick Tucker, Kate Parker

Erschienen in: Cellulose | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Expanded polystyrene foams are lightweight and cheap, but they have excellent strength and insulation properties. However, their inability to biodegrade in traditional landfill situations makes their disposal problematic. Starch, a polysaccharide, has the potential to replace synthetic thermoplastics for some applications but starch-based foams are hydrophilic, which limits their applications. In this work, polylactide (PLA), a sustainably derived and industrially compostable polymer, was added to starch/cellulose composite foams to enhance their water barrier properties. PLA powder at various weight % was mixed with moistened starch and cellulose mixture, and composite foams were prepared by compression moulding at 220 °C. The thermomechanical and viscoelastic properties of the produced foam materials were analysed by thermogravimetric analysis, dynamic mechanical thermal analysis, mechanical testing, and also by the 3-point compressive mechanical quasi-static testing. It was found that the tensile strength of the composite foams increased with an increase in the PLA loading, which increased from 2.50 MPa for 0% PLA to 3.27 MPa for 9.72% PLA loading. The flexural strength also increased from 345.91 kPa for the 0% PLA to 378.53 kPa for the composite foam containing 4.86% PLA; beyond which the flexural strength started decreasing with an increase in PLA loading. Similarly, the stiffness of the starch/cellulose composite also increased with an increase in PLA loading up to 4.86%, and further increase in PLA loading decreased the stiffness. The flexural modulus of the composite foams increased from 522 MPa for 0% PLA loading to 542.85 MPa for the 4.86% PLA loading. The thermal stability of the starch/cellulose composite foams also increased and the water absorbency decreased with the increased PLA loading.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdel Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:296–301CrossRef Abdel Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:296–301CrossRef
Zurück zum Zitat Ali A, Xie F, Yu L, Liu H, Meng L, Khalid S, Chen L (2018) Preparation and characterization of starch-based composite films reinforced by polysaccharide-based crystals. Composites B 133:122–128CrossRef Ali A, Xie F, Yu L, Liu H, Meng L, Khalid S, Chen L (2018) Preparation and characterization of starch-based composite films reinforced by polysaccharide-based crystals. Composites B 133:122–128CrossRef
Zurück zum Zitat Avérous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41:4157–4167CrossRef Avérous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41:4157–4167CrossRef
Zurück zum Zitat Avérous L, Fringant C, Moro L (2001) Plasticized starch–cellulose interactions in polysaccharide composites. Polymer 42:6565–6572CrossRef Avérous L, Fringant C, Moro L (2001) Plasticized starch–cellulose interactions in polysaccharide composites. Polymer 42:6565–6572CrossRef
Zurück zum Zitat Carmona VB, De Campos A, Marconcini JM, Mattoso LHC (2014) Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibres by non-isothermal procedures. J Therm Anal Calorim 115:153–160CrossRef Carmona VB, De Campos A, Marconcini JM, Mattoso LHC (2014) Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibres by non-isothermal procedures. J Therm Anal Calorim 115:153–160CrossRef
Zurück zum Zitat Chen J, Long Z, Wang J, Wu M, Wang F, Wang B, Lv W (2017) Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films. Cellulose 24:4449–4459CrossRef Chen J, Long Z, Wang J, Wu M, Wang F, Wang B, Lv W (2017) Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films. Cellulose 24:4449–4459CrossRef
Zurück zum Zitat Corradini E, de Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2006) Mechanical and morphological characterization of starch/zein blends plasticised with glycerol. J Appl Polym Sci 101:4133–4139CrossRef Corradini E, de Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2006) Mechanical and morphological characterization of starch/zein blends plasticised with glycerol. J Appl Polym Sci 101:4133–4139CrossRef
Zurück zum Zitat Deng Y, Catchmark JM (2014) Insoluble starch composite foams produced through microwave expansion. Carbohydr Polym 111:864–869CrossRefPubMed Deng Y, Catchmark JM (2014) Insoluble starch composite foams produced through microwave expansion. Carbohydr Polym 111:864–869CrossRefPubMed
Zurück zum Zitat Dos Santos BH, De Souza Do Prado K, Jacinto AA, Da Silva Spinacé MA (2018) Influence of sugarcane bagasse fibre size on biodegradable composites of thermoplastic starch. J Renew Mater 6:176–182CrossRef Dos Santos BH, De Souza Do Prado K, Jacinto AA, Da Silva Spinacé MA (2018) Influence of sugarcane bagasse fibre size on biodegradable composites of thermoplastic starch. J Renew Mater 6:176–182CrossRef
Zurück zum Zitat Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Cassava/sugar palm fibre reinforced cassava starch hybrid composites: physical, thermal and structural properties. Int J Biolog Macromol 101:75–83CrossRef Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Cassava/sugar palm fibre reinforced cassava starch hybrid composites: physical, thermal and structural properties. Int J Biolog Macromol 101:75–83CrossRef
Zurück zum Zitat Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biolog Macromol 112:442–447CrossRef Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biolog Macromol 112:442–447CrossRef
Zurück zum Zitat Ghorpade VM, Gennadios A, Hanna MA (2001) Laboratory composting of extruded poly(lactic acid) sheets. Bioresour Technol 76:57–61CrossRefPubMed Ghorpade VM, Gennadios A, Hanna MA (2001) Laboratory composting of extruded poly(lactic acid) sheets. Bioresour Technol 76:57–61CrossRefPubMed
Zurück zum Zitat Glenn GM, Orts WJ, Nobes GAR (2001a) Starch, fibre and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212CrossRef Glenn GM, Orts WJ, Nobes GAR (2001a) Starch, fibre and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212CrossRef
Zurück zum Zitat Glenn GM, Orts WJ, Nobes GAR, Gray GM (2001b) In situ laminating process for baked starch-based foams. Ind Crop Prod 14:125–134CrossRef Glenn GM, Orts WJ, Nobes GAR, Gray GM (2001b) In situ laminating process for baked starch-based foams. Ind Crop Prod 14:125–134CrossRef
Zurück zum Zitat Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956CrossRef Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956CrossRef
Zurück zum Zitat Ibrahim H, Mehanny S, Darwish L, Farag M (2017) A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibres. J Polym Environ 26:1–14 Ibrahim H, Mehanny S, Darwish L, Farag M (2017) A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibres. J Polym Environ 26:1–14
Zurück zum Zitat Kacurakova M, Smith C, Gidley J, Wilson H (2002) Molecular interaction in bacterial cellulose composite studied by 1D FT-IR and dynamics 2D-FT-IR. Carbohydr Res 337:1145–1153CrossRefPubMed Kacurakova M, Smith C, Gidley J, Wilson H (2002) Molecular interaction in bacterial cellulose composite studied by 1D FT-IR and dynamics 2D-FT-IR. Carbohydr Res 337:1145–1153CrossRefPubMed
Zurück zum Zitat Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef
Zurück zum Zitat Kim J-Y, Huber KC (2016) Preparation and characterization of corn starch-β-carotene composites. Carbohydr Polym 136:394–401CrossRefPubMed Kim J-Y, Huber KC (2016) Preparation and characterization of corn starch-β-carotene composites. Carbohydr Polym 136:394–401CrossRefPubMed
Zurück zum Zitat Lawton JW, Shogren RL, Tiefenbacher KF (1999) Effect of batter solids and starch type on the structure of baked starch foams. Cereal Chem 76:682–687CrossRef Lawton JW, Shogren RL, Tiefenbacher KF (1999) Effect of batter solids and starch type on the structure of baked starch foams. Cereal Chem 76:682–687CrossRef
Zurück zum Zitat Liu D, Dong Y, Bhattacharyya D, Sui G (2017) Novel sandwiched structures in starch/cellulose nanowhiskers (CNWs) composite films. Compos Commun 4:5–9CrossRef Liu D, Dong Y, Bhattacharyya D, Sui G (2017) Novel sandwiched structures in starch/cellulose nanowhiskers (CNWs) composite films. Compos Commun 4:5–9CrossRef
Zurück zum Zitat Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–186CrossRef Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–186CrossRef
Zurück zum Zitat Martin O, Schwach E, Avérous L, Couturier Y (2001) Properties of biodegradable multilayer films based on plasticized wheat starch. Stärke 53:372–380CrossRef Martin O, Schwach E, Avérous L, Couturier Y (2001) Properties of biodegradable multilayer films based on plasticized wheat starch. Stärke 53:372–380CrossRef
Zurück zum Zitat Mbey JA, Thomas F (2015) Components interactions controlling starch–kaolinite composite films properties. Carbohydr Polym 117:739–745CrossRefPubMed Mbey JA, Thomas F (2015) Components interactions controlling starch–kaolinite composite films properties. Carbohydr Polym 117:739–745CrossRefPubMed
Zurück zum Zitat Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458CrossRefPubMed Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458CrossRefPubMed
Zurück zum Zitat Muller J, Jiménez A, González-Martínez C, Chiralt A (2016) Influence of plasticizers on thermal properties and crystallisation behaviour of Poly(lactic acid) films obtained by compression moulding. Polym Int 65:970–978CrossRef Muller J, Jiménez A, González-Martínez C, Chiralt A (2016) Influence of plasticizers on thermal properties and crystallisation behaviour of Poly(lactic acid) films obtained by compression moulding. Polym Int 65:970–978CrossRef
Zurück zum Zitat Muneer F, Andersson M, Koch K, Menzel C, Hedenqvist MS, Gällstedt M, Plivelic TS, Kuktaite R (2015) Nanostructural morphology of plasticized wheat gluten and modified potato starch composites: relationship to mechanical and barrier properties. Biomacromolecules 16:695–705CrossRefPubMed Muneer F, Andersson M, Koch K, Menzel C, Hedenqvist MS, Gällstedt M, Plivelic TS, Kuktaite R (2015) Nanostructural morphology of plasticized wheat gluten and modified potato starch composites: relationship to mechanical and barrier properties. Biomacromolecules 16:695–705CrossRefPubMed
Zurück zum Zitat Noorbakhsh-Soltani SM, Zerafat MM, Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 189:48–55CrossRefPubMed Noorbakhsh-Soltani SM, Zerafat MM, Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 189:48–55CrossRefPubMed
Zurück zum Zitat Orue A, Corcuera MA, Pena C, Eceiza A, Arbelaiz A (2016) Bionanocomposites based on thermoplastic starch and cellulose nanofibers. J Thermoplast Compos Mater 29:817–832CrossRef Orue A, Corcuera MA, Pena C, Eceiza A, Arbelaiz A (2016) Bionanocomposites based on thermoplastic starch and cellulose nanofibers. J Thermoplast Compos Mater 29:817–832CrossRef
Zurück zum Zitat Patil NV, Netravali AN (2016) Microfibrillated cellulose-reinforced nonedible starch-based thermoset biocomposites. J Appl Polym Sci 133:43803CrossRef Patil NV, Netravali AN (2016) Microfibrillated cellulose-reinforced nonedible starch-based thermoset biocomposites. J Appl Polym Sci 133:43803CrossRef
Zurück zum Zitat Preechawong D, Peesan M, Supaphol P, Rujiravanit R (2005) Preparation and characterisation of starch/poly(l-lactic acid) hybrid foams. Carbohyd Polym 59:329–337CrossRef Preechawong D, Peesan M, Supaphol P, Rujiravanit R (2005) Preparation and characterisation of starch/poly(l-lactic acid) hybrid foams. Carbohyd Polym 59:329–337CrossRef
Zurück zum Zitat Romero-Bastida CA, Tapia-Blácido DR, Méndez-Montealvo G, Bello-Pérez LA, Velázquez G, Alvarez-Ramirez J (2016) Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydr Polym 152:351–360CrossRefPubMed Romero-Bastida CA, Tapia-Blácido DR, Méndez-Montealvo G, Bello-Pérez LA, Velázquez G, Alvarez-Ramirez J (2016) Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydr Polym 152:351–360CrossRefPubMed
Zurück zum Zitat Sagnelli D, Kirkensgaard JJK, Giosafatto CVL, Ogrodowicz N, Kruczał K, Mikkelsen MS, Maigret J-E, Lourdin D, Mortensen K, Blennow A (2017) All-natural bio-plastics using starch-beta-glucan composites. Carbohydr Polym 172:237–245CrossRefPubMed Sagnelli D, Kirkensgaard JJK, Giosafatto CVL, Ogrodowicz N, Kruczał K, Mikkelsen MS, Maigret J-E, Lourdin D, Mortensen K, Blennow A (2017) All-natural bio-plastics using starch-beta-glucan composites. Carbohydr Polym 172:237–245CrossRefPubMed
Zurück zum Zitat Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CM (2013) Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92:19–22CrossRefPubMed Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CM (2013) Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92:19–22CrossRefPubMed
Zurück zum Zitat Shogren RL, Lawton JW, Doane WM, Tiefenbacher KF (1998) Structure and morphology of baked starch foams. Polymer 39:6649–6655CrossRef Shogren RL, Lawton JW, Doane WM, Tiefenbacher KF (1998) Structure and morphology of baked starch foams. Polymer 39:6649–6655CrossRef
Zurück zum Zitat Soykeabkaew N, Supaphol P, Rujiravanit R (2004) Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohyd Polym 58:53–63CrossRef Soykeabkaew N, Supaphol P, Rujiravanit R (2004) Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohyd Polym 58:53–63CrossRef
Zurück zum Zitat Soykeabkaew N, Nittaya L, Atitaya N, Natthawut Y, Tawee T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852CrossRef Soykeabkaew N, Nittaya L, Atitaya N, Natthawut Y, Tawee T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852CrossRef
Zurück zum Zitat Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Composites A 78:246–263CrossRef Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Composites A 78:246–263CrossRef
Zurück zum Zitat Spiridon I, Teacǎ C-A, Bodîrlǎu R, Bercea M (2013) Behaviour of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environ 21:431–440CrossRef Spiridon I, Teacǎ C-A, Bodîrlǎu R, Bercea M (2013) Behaviour of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environ 21:431–440CrossRef
Zurück zum Zitat Stepto RF (2006) Understanding the processing of thermoplastic starch. Macromol Symp 245–246:571–577CrossRef Stepto RF (2006) Understanding the processing of thermoplastic starch. Macromol Symp 245–246:571–577CrossRef
Zurück zum Zitat Subramaniam A (1990) Natural rubber. In: Ohm RF (ed) The Vanderbilt rubber handbook. R.T. Vanderbilt Company, Norwalk, pp 23–43 Subramaniam A (1990) Natural rubber. In: Ohm RF (ed) The Vanderbilt rubber handbook. R.T. Vanderbilt Company, Norwalk, pp 23–43
Zurück zum Zitat Swanson CL, Shogren RL, Fanta GF, Imam SH (1993) Starch-plastic materials—preparation, physical properties, and biodegradability (a review of recent USDA research). J Environ Polym Degrad 1:155–166CrossRef Swanson CL, Shogren RL, Fanta GF, Imam SH (1993) Starch-plastic materials—preparation, physical properties, and biodegradability (a review of recent USDA research). J Environ Polym Degrad 1:155–166CrossRef
Zurück zum Zitat Tabassi N, Moghbeli MR, Ghasemi I (2016) Thermoplastic starch/cellulose nanocrystal green composites prepared in an internal mixer. Iran Polym J 25:45–57CrossRef Tabassi N, Moghbeli MR, Ghasemi I (2016) Thermoplastic starch/cellulose nanocrystal green composites prepared in an internal mixer. Iran Polym J 25:45–57CrossRef
Zurück zum Zitat Wang P, Chen F, Zhang H, Meng W, Sun Y, Liu C (2017) Large-scale preparation of jute-fiber-reinforced starch-based composites with high mechanical strength and optimised biodegradability. Stärke 69:1700052CrossRef Wang P, Chen F, Zhang H, Meng W, Sun Y, Liu C (2017) Large-scale preparation of jute-fiber-reinforced starch-based composites with high mechanical strength and optimised biodegradability. Stärke 69:1700052CrossRef
Zurück zum Zitat Zhang C-W, Li F-Y, Li J-F, Wang L-M, Xie Q, Xu J, Chen S (2017) A new biodegradable composite with open cell by combining modified starch and plant fibres. Mater Design 120:222–229CrossRef Zhang C-W, Li F-Y, Li J-F, Wang L-M, Xie Q, Xu J, Chen S (2017) A new biodegradable composite with open cell by combining modified starch and plant fibres. Mater Design 120:222–229CrossRef
Zurück zum Zitat Zhou J, Song J, Parker R (2006) Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydr Polym 63:466–475CrossRef Zhou J, Song J, Parker R (2006) Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydr Polym 63:466–475CrossRef
Metadaten
Titel
Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA
verfasst von
Mohammad M. Hassan
Marie J. Le Guen
Nick Tucker
Kate Parker
Publikationsdatum
28.03.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 7/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02393-1

Weitere Artikel der Ausgabe 7/2019

Cellulose 7/2019 Zur Ausgabe