Skip to main content
Erschienen in: Cellulose 8/2019

05.04.2019 | Original Research

Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption

verfasst von: Shaun Ang, Victoria Haritos, Warren Batchelor

Erschienen in: Cellulose | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocellulose has great potential for end use in the pulp and paper industry, but its mechanical production process is often extremely energy intensive. Although various pre-treatment methods have been introduced to significantly lower the energy consumption of nanocellulose production, there still remains a great challenge to match the cost to mechanical strength performance of nanocellulose. This research investigates the relationship between energy consumption with numerous refining and homogenization cycles towards the production of high aspect ratio and low diameter nanocellulose, and whether this is necessary to achieve high strength sheets. Never-dried Bleached Eucalyptus Kraft pulp was mechanically treated with a PFI mill refiner and homogenizer. The actual homogenization energy measured on a lab scale was significantly higher than that predicted only from the simplified pressure drop equation which is inaccurately independent of homogenizer design and size. We measured two aspects of fiber quality believed to be related to sheet mechanical strength: the fiber diameter, which is inversely proportional to the surface area available for bonding, and the fiber aspect ratio, which is believed to control the efficiency of stress transfer within a network. Both refining and homogenization reduced the fiber diameter and increased the aspect ratio, but homogenization was more effective at both. There was surprisingly little correlation between the measures of fiber quality and mechanical sheet strength. All PFI mill refined samples had a tensile index of around 100 Nm/g, while additional treatment with homogenization increased this only by approximately 20%. This was despite the most heavily treated fibers (50,000 PFI revolutions and 3 homogenization passes at 1000 bar) having a median diameter of 12 nm and aspect ratio of 229 compared to the least treated fibers (10,000 PFI revolutions) with a median diameter of 31 nm and aspect ratio of 102. The most heavily treated fibers required 39,000 kWh/t of energy, a tenfold increase over the least heavily treated fibers. The results confirmed that there was small benefit, in terms of mechanical strength, of using very large amounts of energy to produce very low diameter, high aspect ratio nanocellulose fibers.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ankerfors M (2012) Microfibrillated cellulose energy-efficient preparation techniques and key properties. KTH Royal Institute of Technology, Stockholm Ankerfors M (2012) Microfibrillated cellulose energy-efficient preparation techniques and key properties. KTH Royal Institute of Technology, Stockholm
Zurück zum Zitat Chang CP, Wang IC, Perng YS (2013) Enhanced thermal behavior, mechanical properties and UV shielding of polylactic acid (PLA) Composites reinforced with nanocrystalline cellulose and filled with nanosericite. Cellul Chem Technol 47:111–123 Chang CP, Wang IC, Perng YS (2013) Enhanced thermal behavior, mechanical properties and UV shielding of polylactic acid (PLA) Composites reinforced with nanocrystalline cellulose and filled with nanosericite. Cellul Chem Technol 47:111–123
Zurück zum Zitat Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304CrossRef Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304CrossRef
Zurück zum Zitat Kerekes RJ (2005) Characterizing refining action in PFI mills. Tappi J 4:9–14 Kerekes RJ (2005) Characterizing refining action in PFI mills. Tappi J 4:9–14
Zurück zum Zitat Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: The science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK, pp 225–254 Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: The science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK, pp 225–254
Zurück zum Zitat Nelson K, Retsina T, Iakovlev M, van Heiningen A, Deng Y, Shatkin JA, Mulyadi A (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. In: Madsen L, Svedberg E (eds) Materials research for manufacturing. Springer series in materials science, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-23419-9_9 CrossRef Nelson K, Retsina T, Iakovlev M, van Heiningen A, Deng Y, Shatkin JA, Mulyadi A (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. In: Madsen L, Svedberg E (eds) Materials research for manufacturing. Springer series in materials science, vol 224. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-319-23419-9_​9 CrossRef
Zurück zum Zitat Niskanen K (1998) Papermaking science and technology, paper physics vol 16. Forest Products Engineers Finland, Helsinki Niskanen K (1998) Papermaking science and technology, paper physics vol 16. Forest Products Engineers Finland, Helsinki
Zurück zum Zitat Page DH (1969) A theory for the tensile strength of paper. Tappi J 52:674–681 Page DH (1969) A theory for the tensile strength of paper. Tappi J 52:674–681
Zurück zum Zitat Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10:9–16 Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10:9–16
Zurück zum Zitat Rantanen J, Maloney TC (2013) Press dewatering and nip rewetting of paper containing nano- and microfibril cellulose. Nord Pulp Pap Res J 28:582–587CrossRef Rantanen J, Maloney TC (2013) Press dewatering and nip rewetting of paper containing nano- and microfibril cellulose. Nord Pulp Pap Res J 28:582–587CrossRef
Zurück zum Zitat Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660. https://doi.org/10.1002/app.32831 CrossRef Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660. https://​doi.​org/​10.​1002/​app.​32831 CrossRef
Zurück zum Zitat TAPPI (2001a) T 248 sp-00 Laboratory Beating of Pulp (PFI Mill Method). Technical Association of the Pulp and Paper Industry (TAPPI) Press, Technology Park, Atlanta, GA, USA TAPPI (2001a) T 248 sp-00 Laboratory Beating of Pulp (PFI Mill Method). Technical Association of the Pulp and Paper Industry (TAPPI) Press, Technology Park, Atlanta, GA, USA
Zurück zum Zitat TAPPI (2001b) T 402 sp-98 Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. Technical Association of the Pulp and Paper Industry (TAPPI) Press, Technology Park, Atlanta, GA, USA TAPPI (2001b) T 402 sp-98 Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. Technical Association of the Pulp and Paper Industry (TAPPI) Press, Technology Park, Atlanta, GA, USA
Zurück zum Zitat TAPPI (2001c) T 494 om-96 Tensile Breaking Properties of Paper and Paperboard (Using Constant Rate of Elongation Apparatus). Technical Association of the Pulp and Paper Industry (TAPPI) Press, Technology Park, Atlanta, GA, USA TAPPI (2001c) T 494 om-96 Tensile Breaking Properties of Paper and Paperboard (Using Constant Rate of Elongation Apparatus). Technical Association of the Pulp and Paper Industry (TAPPI) Press, Technology Park, Atlanta, GA, USA
Zurück zum Zitat Vartiainen J, Lahtinen P, Kaljunen T, Kunnari V, Peresin MS, Tammelin T (2015) Comparison of properties between cellulose nanofibrils made from banana, sugar beet, hemp, softwood and hardwood pulps. O Pap 76:57–60 Vartiainen J, Lahtinen P, Kaljunen T, Kunnari V, Peresin MS, Tammelin T (2015) Comparison of properties between cellulose nanofibrils made from banana, sugar beet, hemp, softwood and hardwood pulps. O Pap 76:57–60
Zurück zum Zitat Vigneshwaran N, Satyamurthy P, Jain P (2015) Biological synthesis of nanocrystalline cellulose by controlled hydrolysis of cotton fibers and linters. In: Handbook of polymer nanocomposites. Processing, performance and application: volume C: polymer nanocomposites of cellulose nanoparticles, pp 27–36. https://doi.org/10.1007/978-3-642-45232-1_62 Vigneshwaran N, Satyamurthy P, Jain P (2015) Biological synthesis of nanocrystalline cellulose by controlled hydrolysis of cotton fibers and linters. In: Handbook of polymer nanocomposites. Processing, performance and application: volume C: polymer nanocomposites of cellulose nanoparticles, pp 27–36. https://​doi.​org/​10.​1007/​978-3-642-45232-1_​62
Zurück zum Zitat Walker C (2012) Thinking small is leading to big changes. Paper 360(7):8–13 Walker C (2012) Thinking small is leading to big changes. Paper 360(7):8–13
Metadaten
Titel
Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption
verfasst von
Shaun Ang
Victoria Haritos
Warren Batchelor
Publikationsdatum
05.04.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02400-5

Weitere Artikel der Ausgabe 8/2019

Cellulose 8/2019 Zur Ausgabe