Skip to main content
Erschienen in: Cellulose 11/2019

19.06.2019 | Original Research

Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport

verfasst von: Yiming Chen, Lijie Zhou, Lian Chen, Gaigai Duan, Changtong Mei, Chaobo Huang, Jingquan Han, Shaohua Jiang

Erschienen in: Cellulose | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Directional freeze-drying is considered to regulate the structure of nanocellulose aerogels with special performances. In this work, TEMPO-oxidized cellulose nanofiber aerogels with high porosity (> 99.5%) and low density (~ 7 mg/cm3) were produced by different freeze-drying methods. The effects of temperature, freezing reagents and freezing methods on the structure and properties of aerogels were investigated. Among them, an anisotropic cellulose aerogel was obtained using a simple and flexible directional freezing in ethanol of − 30 °C by a self-made directional freezer. Our results demonstrated that it could present honeycomb-like pores in the transverse direction and regular directional tunnels in the longitudinal direction, and some attractive features, such as high water adsorption (120 g/g) and stability in water. Compared with other aerogels, this anisotropic structure also provided the aerogel with excellent compressive property (15.2 kPa) and faster liquid transport (4.95 mm/s) in the longitudinal direction than in other directions. The distinctive aerogels based on nanocellulose by directional freeze-drying are also expected to be combined with multifunctional materials to achieve directional applications to meet the requirements of different fields.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ding Q, Xu X, Yue Y, Mei C, Huang C, Jiang S, Wu Q, Han J (2018) Nanocellulose-mediated electroconductive self-Healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10:27987–28002. https://doi.org/10.1021/acsami.8b09656 CrossRefPubMed Ding Q, Xu X, Yue Y, Mei C, Huang C, Jiang S, Wu Q, Han J (2018) Nanocellulose-mediated electroconductive self-Healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10:27987–28002. https://​doi.​org/​10.​1021/​acsami.​8b09656 CrossRefPubMed
Metadaten
Titel
Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport
verfasst von
Yiming Chen
Lijie Zhou
Lian Chen
Gaigai Duan
Changtong Mei
Chaobo Huang
Jingquan Han
Shaohua Jiang
Publikationsdatum
19.06.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 11/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02557-z

Weitere Artikel der Ausgabe 11/2019

Cellulose 11/2019 Zur Ausgabe