Skip to main content

Advertisement

Log in

Synthesis of light weight, high strength biomass-derived composite aerogels with low thermal conductivities

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Aerogels that are very porous, mechanically tough, and have low thermal conductivities have attracted significant research interest due to their potential use in engineering applications. Herein, we describe the preparation of biomass-derived composite aerogels containing agar, chitosan (CS), esterified cellulose nanocrystals (ECNCs), and graphene using an environmentally friendly ice-templating method. The prepared composite aerogels have high porosities (> 97%) and low densities (3.1–4.3 kg/m3). FESEM images of these aerogels reveal interconnected honeycomb-like structures several micrometers in size. The thermal conductivity of the ECNCs/CS/agar aerogel was found to be 21 mW/m K, which is close to the thermal conductivity of air under ambient conditions (25.4 mW/m K). The ECNCs/CS/agar aerogel exhibited a stress of 210 kPa, which is about 500% higher than that of the CS/agar aerogel. The compressive strength of the graphene/ECNCs/CS/agar aerogel increased from 210 to 580 kPa (a factor of 2.8) as the graphene content was increased from 0 to 1.3%. Furthermore, the composite aerogels are flexible and compressible, and are candidates for practical applications such as insulating materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alila S, Ferraria AM, do Rego AMB, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N,N′-carbonyldiimidazole as activator. Carbohydr Polym 77:553–562

    Article  CAS  Google Scholar 

  • Barbera V, Guerra S, Brambilla L, Maggio M, Serafini A, Conzatti L, Vitale A, Galimberti M (2017) Carbon papers and aerogels based on graphene layers and chitosan: direct preparation from high surface area graphite. Biomacromol 18:3978–3991

    Article  CAS  Google Scholar 

  • Bodirlau R, Teaca CA, Spiridon I (2008) Chemical modification of beech wood: effect on thermal stability. Bioresour Technol 3:789–800

    CAS  Google Scholar 

  • Cao W, Cheng X, Gong L, Li Y, Zhang R, Zhang H (2015) Thermal conductivity of highly porous ceramic foams with different agar concentrations. Mater Lett 139:66–69

    Article  CAS  Google Scholar 

  • Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28

    Article  CAS  Google Scholar 

  • Chandrasekaran S, Campbell PG, Baumann TF, Worsley MA (2017) Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J Mater Res 32:4166–4185

    Article  CAS  Google Scholar 

  • Chen L, Li Y, Du Q, Wang Z, Xia Y, Yedinak E, Lou J, Ci L (2017) High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydr Polym 155(2):345–353

    Article  CAS  PubMed  Google Scholar 

  • Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev 34:273–299

    Article  CAS  Google Scholar 

  • de France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  CAS  Google Scholar 

  • de Luna MS, Ascione C, Santillo C, Verdolotti L, Lavorgna M, Buonocore GG, Castaldo R, Filippone G, Xia H, Ambrosio L (2019) Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr Polym 211:195–203

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Chia CH, Kaco H (2018) Effect of graphene oxide on thermal stability of aerogel bionanocomposite from cellulose-based waste biomass. Cellulose 25:5099–5112

    Article  CAS  Google Scholar 

  • Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B (2018) Review on the production of polysaccharide aerogel particles. Materials 11:2144

    Article  PubMed Central  Google Scholar 

  • Gao K, Guo Y, Niu Q, Fang H, Zhang L, Zhang Y, Wang L (2018) Effects of chitin nanofibers on the microstructure and properties of cellulose nanofibers/chitin nanofibers composite aerogels. Cellulose 25(8):4591–4602

    Article  CAS  Google Scholar 

  • Ge X, Shan Y, Wu L, Mu X, Peng H, Jiang Y (2018) High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohydr Polym 197(1):277–283

    Article  CAS  PubMed  Google Scholar 

  • Geng H (2018) Preparation and characterization of cellulose/N,N′-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels. Carbohydr Polym 196:289–298

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236

    Article  CAS  Google Scholar 

  • Idowu A, Boesl B, Agarwal A (2018) 3D graphene foam-reinforced polymer composites—a review. Carbon 135:52–71

    Article  CAS  Google Scholar 

  • Kanamori K, Nakanishi K (2011) Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem Soc Rev 40:754–770

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rao KM, Han SS (2018) Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr Polym 193(1):228–238

    Article  CAS  PubMed  Google Scholar 

  • Leceta I, Guerrero P, Ibarburu I, Dueñas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116(4):889–899

    Article  CAS  Google Scholar 

  • Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  • Li J, Li DM, Yang YX, Li JP, Zha F, Lei ZQ (2016) A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem 18:541–549

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Liu Y, Lai W, Huang F, Ou A, Qin R, Liu X, Wang X (2018) Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustain Chem Eng 6:11979–11988

    Article  CAS  Google Scholar 

  • Liao Y, Wang M, Chen D (2018) Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium (VI) adsorption. Ind Eng Chem Res 57:8472–8483

    Article  CAS  Google Scholar 

  • Magesh G, Bhoopathi G, Nithya N, Arun AP, Ranjith Kumar E (2018) Effect of biopolymer blend matrix on structural, optical and biological properties of chitosan-agar blend ZnO nanocomposites. J Inorg Organomet Polym Mater 28:1528–1539

    Article  CAS  Google Scholar 

  • Maleki H, Whitmore L, Hüsing N (2018) Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications. J Mater Chem A 6:12598–12612

    Article  CAS  Google Scholar 

  • Nait-Ali B, Haberko K, Vesteghem H, Absi J, Smith DS (2006) Thermal conductivity of highly porous zirconia. J Eur Ceram Soc 26:3567–3574

    Article  CAS  Google Scholar 

  • Ogawa K, Yui T (1993) Crystallinity of partially N-acetylated chitosans. Biosci Biotechnol Biochem 57(9):1466–1469

    Article  CAS  Google Scholar 

  • Osorio DA, Seifried B, Moquin P, Grandfield K, Cranston ED (2018) Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J Mater Sci 53:9842–9860

    Article  CAS  Google Scholar 

  • Pan Z, Nishihara H, Iwamura S, Sekiguchi T, Sato A, Isogai A, Kang F, Kyotani T, Yang Q (2016) Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10(12):10689–10697

    Article  CAS  PubMed  Google Scholar 

  • Politano A, Marino AR, Formoso V, Chiarello G (2011) Hydrogen bonding at the water/quasi-freestanding graphene interface. Carbon 49(15):5180–5184

    Article  CAS  Google Scholar 

  • Samaddar P, Son Y, Tsang DCW, Kim K, Kumar S (2018) Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord Chem Rev 368:93–114

    Article  CAS  Google Scholar 

  • Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 8:1824–1832

    Article  CAS  Google Scholar 

  • Shamsuri AA, Abdullah DK, Rusli D (2012) Fabrication of agar/biopolymer blend aerogels in ionic liquid and co-solvent mixture. Cellul Chem Technol 46(1–2):45–52

    CAS  Google Scholar 

  • Shan C, Wang L, Li Z, Zhong X, Hou Y, Zhang L, Shi F (2019) Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts. Carbohydr Polym 103(1):19–25

    Article  CAS  Google Scholar 

  • Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofiber-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802

    Article  PubMed  CAS  Google Scholar 

  • Sui R, Charpentier P (2012) Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem Rev 112:3057–3082

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresour Technol 127:100–105

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bai H, Yao Z, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20:9032–9036

    Article  CAS  Google Scholar 

  • Wang C, Chen X, Wang B, Huang M, Wang B, Jiang Y, Ruoff RS (2018) Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12:5816–5825

    Article  CAS  PubMed  Google Scholar 

  • White RJ, Brun N, Budarin VL, Clark JH, Titirici M (2014) Always look on the “light” side of life: sustainable carbon aerogels. Chemsuschem 7:670–689

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Liang H, Chen L, Hu B, Yu S (2016) Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res 49:96–105

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xia Y, Xu P, Chen B (2018) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25:3533–3544

    Article  CAS  Google Scholar 

  • Yousefi N, Wong KKW, Hosseinidoust Z, Sørensen HS, Bruns S, Zheng Y, Tufenkji N (2018) Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale 10:7171–7184

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Shi Y, Yang D, Liu Y, Qu J, Yu Z (2017) Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl Mater Interfaces 9(26):21809–21819

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen Y, Shi L, Li J, Guo Z (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22:799–815

    Article  CAS  Google Scholar 

  • Zhang M, Jiang W, Liu D, Wang J, Liu Y, Zhu Y, Zhu Y (2016) Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl Catal B Environ 183:263–268

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang L, Zhang G, Li H (2018) Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl Mater Interfaces 10:21565–21572

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118

    Article  CAS  Google Scholar 

  • Zhu G, Xu H, Dufresne A, Lin N (2018) High-adsorption, self-extinguishing, thermal, and acoustic-resistance aerogels based on organic and inorganic waste valorization from cellulose nanocrystals and red mud. ACS Sustain Chem Eng 6:7168–7180

    Article  CAS  Google Scholar 

  • Ziegler C, Wolf A, Liu W, Herrmann A, Gaponik N, Eychmüller A (2017) Modern inorganic aerogels. Angew Chem Int Ed 56:13200–13221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the generous financial support of the National Natural Science Foundation of China (Grant No. 31870561), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J01088), Chemicals and Science Foundation for Distinguished Young Scholars of Fujian Agricultural and Forestry University (Grant No. xjq201422) and Plan for the training of Outstanding Young Scientific Research Personnel in higher education institutions of Fujian Province (selected in 2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lirong Tang or Biao Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zhuang, S., Hong, B. et al. Synthesis of light weight, high strength biomass-derived composite aerogels with low thermal conductivities. Cellulose 26, 8699–8712 (2019). https://doi.org/10.1007/s10570-019-02704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02704-6

Keywords

Navigation