Skip to main content
Log in

A Neural Infrastructure for Rhythmic Motor Patterns

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is possible to work out the neural circuity of many invertebrate central pattern generators (CPGs) thereby providing a basis for linking cellular processes to actual behaviors. This review summarizes the infrastructure of the two CPGs in the lobster stomatogastric ganglion in terms of circuitry, ionic conductances and chemical modulation by amines and peptides. Analysis of the circuit using modeling techniques including the use of electronic neurons closes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, H. D. I., Huerta, R., Rabinovich, M., Rulkov, N. F., Rowat, P. F., and Selverston, A. I. (1996). Synchronized action of synaptically coupled chaotic model neurons. Neural. Comput. 8:50–65.

    Google Scholar 

  • Ayers, J. L., and Selverston, A. I. (1979). Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst’s magnet effect. J. Comp. Physiol. 129:5–17.

    Google Scholar 

  • Ayers, J. L., and Selverston, A. I. (1984). Synaptic perturbation and entrainment of gastric mill rhythm of the spiny lobster. J. Neurophysiol. 51:113–125.

    CAS  PubMed  Google Scholar 

  • Baro, D. J., Cole, C. L., Zarrin, A. R., Hughes, S., and Harris-Warrick, R. M. (1994). Shal gene expression in identified neurons of the pyloric network in the colster stomatogastric ganglion. Receptorsy Channels 2:193–205.

    CAS  Google Scholar 

  • Baro, D. J., Levini, R. M., Kim, M. T., Willms, A. R., Lanning, C. C., Rodriguez, H. E., and Harris-Warrick, R. M. (1997). Quantitative single-cell-reverse transcription-PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. J. Neurosci. 17:6597–6610.

    CAS  PubMed  Google Scholar 

  • Bartos, M., Manor, Y., Nadim, F., Marder, E., and Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. J. Neurosci. 19:6650–6660.

    CAS  PubMed  Google Scholar 

  • Beenhakker, M. P., Blitz, D. M., and Nusbaum, M. P. (2004). Long acting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. J. Neurophysiol. 91:78–91.

    PubMed  Google Scholar 

  • Bucher, D., Thirumalai, V., and Marder, E. (2003). Axonal dopamine receptors activate peripheral spike initiation in a stomatogastric motor neuron. J. Neurosci. 23:6866–6875.

    CAS  PubMed  Google Scholar 

  • Cazalets, J. R., Nagy, F., and Moulins, M. (1990). Suppressive control of the crustacean pyloric network by a pair of identified interneuron. I. Modulation of the motor pattern. J. Neurosci. 10:448–457.

    CAS  PubMed  Google Scholar 

  • Christie, A. E., Stein, W., Quinlan, J. E., Beenhakker, M. P., Marder, E., and Nusbaum, M. P. (2004). Actions of histaminergic/peptidergic projection neuronon rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J. Comp. Neurol. 469:153–169.

    CAS  PubMed  Google Scholar 

  • Combes, D., Meyrand, P., and Simmers, J. (1999a). Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. J. Neurosci. 19:3610–3619.

    CAS  Google Scholar 

  • Combes, D., Meyrand, P., and Simmers, J. (1999b). Dynamic restructuring of a rhythmic motor program by a single mechanoreceptor neuron in lobster. J. Neurosci. 19:3620–3628.

    CAS  Google Scholar 

  • Elson, R. C., and Selverston, A. I. (1995). Slow and fast synaptic inhibition evoked by pattern-generating neurons of the gastric mill network in spiny lobsters. J. Neurophysiol. 74:1996–2011.

    CAS  PubMed  Google Scholar 

  • Elson, R. C., Huerta, R., Abarbanel, H., Rabinovich, M., and Selverston, A. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. J. Neurophysiol. 82:115–122.

    CAS  PubMed  Google Scholar 

  • Falke, M., Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., Elson, R. C., and Selverston, A. I. (2000). Modeling observed chaotic oscillations in bursting neurons: The role of calcium dynamics and IP3. Biol. Cyber. 82:517–527.

    Google Scholar 

  • Getting, P. A. (1989). Emerging principles governing the operation of neural networks. Ann. Rev. Neurosci. 12:185–204.

    CAS  PubMed  Google Scholar 

  • Gola, M., and Selverston, A. I. (1981). Ionic requirements for bursting activity in lobster stomatogastric neurons. J. Comp. Physiol. 145:191–207.

    CAS  Google Scholar 

  • Golowasch, J., and Marder, E. (1992). Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67:318–331.

    CAS  PubMed  Google Scholar 

  • Graubard, K., and Hartline, D. K. (1991). Voltage clamp analysis of intact stomatogastric neurons. Brain Res. 557:241–254.

    CAS  PubMed  Google Scholar 

  • Heinzel, H. G. (1988). Gastric mill activity in the lobster I. Spontaneous modes of chewing. J. Neurophysiol. 59:528–550.

    CAS  PubMed  Google Scholar 

  • Hempel, C. M., Vincent, P., Adams, S. R., Tsien, R. Y., and Selverston, A. I. (1996). Spatio-temporal dynamics of cAMP signals in an intact neural circuit. Nature 384:166–169.

    CAS  PubMed  Google Scholar 

  • Hindmarsh, J. L., and Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc. London B. 221:87–102.

    CAS  Google Scholar 

  • Johnson, B. R., Kloppenburg, P., and Harris-Warrick, R. M. (2003). Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion. J. Neurophysiol. 90:631–643.

    CAS  PubMed  Google Scholar 

  • Katz, P. S., and Harris-Warrick, R. M. (1990a). Actions of identified neuromodulatory neurons in a simple motor system. TINS 13:367–373.

    CAS  Google Scholar 

  • Katz, P. S., and Harris-Warrick, R. M. (1990b). Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J. Neurosci. 10:1495–1512.

    CAS  Google Scholar 

  • Katz, P. S., and Harris-Warrick, R. M. (1990c). Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. J. Neurophysiol. 62(2):571–581.

    Google Scholar 

  • Le Masson, G., Le Masson, S., and Moulins, M. (1995). From conductances to neural network prperties: Analysis of simple circuits using the hybrid network method. Prog. Biophys. Mol. Biol. 64:201–220.

    CAS  PubMed  Google Scholar 

  • Marder, E., and Meyrand, P. M. (1989). Chemical modulation of oscillatory neural circuit. In Jacklet, J. (ed.), Neuronal and Cellular Oscillators, Marcel Dekker, Inc., New York, pp. 317–338.

    Google Scholar 

  • Maynard, D. M. (1972). Simpler networks. Ann. N.Y. Acad. Sci. 193:59–72.

    CAS  PubMed  Google Scholar 

  • Maynard, D. M., and Selverston, A. I. (1975). Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. J. Comp. Physiol. 100:161–182.

    Google Scholar 

  • Miller, J. P., and Selverston, A. I. (1979). Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206:702–704.

    CAS  PubMed  Google Scholar 

  • Miller, J. P., and Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48:1416–1432.

    CAS  PubMed  Google Scholar 

  • Mulloney, B., and Selverston, A. I. (1974). Organization of the stomatogastric in the spiny colster. J. Comp. Physiol. 91:53–78.

    Google Scholar 

  • Nadim, F., Manor, Y., Kopell, N., and Marder, E. (1999). Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc. Natl. Acad. Sci. 96:8206–8211.

    CAS  PubMed  Google Scholar 

  • Nagy, F., and Moulins, M. (1981). Proprioceptive control of the bilaterally organized rhythmic activity of the oesophageal neuronal network in the Cape lobster Jasus lalandii. J. Exp. Biol. 90:231–251.

    Google Scholar 

  • Nagy, F., and Dickinson, P. S. (1983). Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. J. Exp. Biol. 105:33–58.

    CAS  PubMed  Google Scholar 

  • Pinto, R. D., Elson, R., Scucs, A., Rabinovich, M., Selverston, A. I., and Abarbanel, H. D. I. (2001). Extended dynamic clamp: controlling up to four neurons using a single desktop computer and interface. J. Neurosci. Methods. 108:39–48.

    CAS  PubMed  Google Scholar 

  • Rezer, E., and Moulins, M. (1983). Expression of the crustacean pyloric pattern generator in the intact animal. J. Comp. Physiol. 153:17–28.

    Google Scholar 

  • Selverston, A. I. (1980). Are central pattern generators understandable ? Behav. Brain Sci. 3:535–571.

    Google Scholar 

  • Simmers, A. J., and Moulins, M. (1988). A disynaptic sensorimotor pathway in the lobster stomatogastric system. J. Neurophysiol. 59:740–756.

    CAS  PubMed  Google Scholar 

  • Szucs, A., Varona, P., Volkovskii, A. R., Abarbanel, D. D. I., Rabinovich, M. I., and Selverston, A. I. (2000). Interacting biological and electronic neurons generate realistic oscillatory rhythms. Neuroreport 11:563–569.

    CAS  PubMed  Google Scholar 

  • Tierney, A. J., and Harris-Warrick, R. M. (1992). Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67:599–609.

    CAS  PubMed  Google Scholar 

  • Turrigiano, G. G., and Selverston, A. I. (1990). A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344:866–868.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen I. Selverston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selverston, A.I. A Neural Infrastructure for Rhythmic Motor Patterns. Cell Mol Neurobiol 25, 223–244 (2005). https://doi.org/10.1007/s10571-005-3154-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3154-8

Keywords

Navigation