Skip to main content
Log in

Explosive compaction and low-temperature sintering of alumina nanopowders

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Physical aspects of explosive compaction of alumina nanopowders with different phase compositions are studied experimentally. Physical processes that occur during consolidation of nanoparticles under pulsed loading are considered. Conditions of retaining of the material nanostructure after compaction and subsequent low-temperature sintering are determined. Physicomechanical properties of explosive compacts and ceramics on the basis of these compacts are studied. A ceramic material characterized by a nanostructure (grain size of ≈200 nm) and high values of density (97% of the theoretical value) and microhardness (up to 23.5 GPa) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanocrystalline Materials: Methods of Synthesis and Properties [in Russian], Izd. Ural. Otd. Ross Akad. Nauk, Ekaterinburg (1998).

    Google Scholar 

  2. R. S. Mishra, C. E. Lesher, and A. K. Mukherjee, “Nanocrystalline alumina by high pressure sintering,” Mater. Sci. Forum, 225–227, 617–622 (1996).

    Article  Google Scholar 

  3. V. V. Ivanov, “Obtaining nanostructural ceramics by magnetic-pulsed compaction of powders,” Doct. Dissertation in Phys. and Math., Ekaterinburg (1998).

    Google Scholar 

  4. R. A. Andrievskii, “New superhard nanostructural materials based on refractory compounds: achievements and prospects,” in: Physicochemistry of Finely Disperse Systems, Proc. Vth All-Russia Conf., Part 1, Ural Div., Russian Acad. of Sci., Ekaterinburg (2001), pp. 23–31.

    Google Scholar 

  5. H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta Mater., 48, 1–29 (2000).

    Article  Google Scholar 

  6. H. Gleiter, “Nanostructured materials: State of the art and perspectives,” Nanostructur. Mater., 6, 3–14 (1995).

    Article  Google Scholar 

  7. S. M. Barinov and V. Ya. Shevchenko, Strength of Engineering Ceramics [in Russian], Nauka, Moscow (1996).

    Google Scholar 

  8. V. F. Petrunin, “Finely disperse powders and nanocrystals — two types of finely disperse systems,” in: Physicochemistry of Finely Disperse Systems, Proc. Vth All-Russia Conf., Part 1, Ural Div., Russian Acad. of Sci., Ekaterinburg (2001), pp. 5–11.

    Google Scholar 

  9. M. I. Alymov, “Methods of obtaining and mechanical properties of nanocrystalline systems,” in: Physicochemistry of Finely Disperse Systems, Proc. IVth All-Russia Conf., Moscow Inst. of Physics and Engineering, Moscow (1999), pp. 293–296.

  10. J. H. Adair, R. R. Wills, and V. D. Linse, “Dynamic compaction of ceramic powders,” in: R. F. Davis, H. Palmour, and R. L. Porter (eds.), Proc. 19th Univ. Conf. Emergent Process Methods for High Technology Ceramics, Plenum Press, New York (1984), pp. 639–655. (Mater. Sci. Res., Vol. 17.)

    Google Scholar 

  11. K. Y. Kim, A. D. Batchelor, K. L. More, and H. Palmour, “Rate controlled sintering of explosively shock-conditioned alumina powders,” ibid., pp. 749–764.

    Google Scholar 

  12. C. L. Hoenig and C. S. Yust, “Explosive compaction of AlN, amorphous Si3N4, boron, and Al2O3 ceramics,” Ceram. Bull., 60, No. 11, 1175–1224 (1981).

    Google Scholar 

  13. R. Prümmer, Explosivverdichtung Pulvriger Substanzen, Springer-Verlag, BRD (1987).

    Google Scholar 

  14. E. G. Galkina, G. A. Adadurov, E. V. Kapitanov, et al., “Effect of the method of compaction of finely disperse nickel powders on the fine structure and microhardness of compacts,” in: Physicochemistry of Finely Disperse Systems [in Russian], Nauka, Moscow (1987), pp. 192–196.

    Google Scholar 

  15. A. A. Shtertser, “Explosive compaction of powder materials,” Doct. Dissertation in Phys. and Math., Novosibirsk (1999).

    Google Scholar 

  16. E. E. Lin, V. A. Medvedkin, and S. A. Novikov, “Compaction of ultradisperse diamonds by weak shock wave,” in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (1995), pp. 89–92.

  17. J. Gao, J. Qin, X. Xu, and R. Zhu, “Explosive consolidation of Si3N4 powder,” ibid., pp. 139–147.

  18. Y. J. Zhang, X. J. Li, G. L. Sun, and X. H. Wang, “Preparing tin-doped indium oxide ceramic bulk via explosive consolidation and sintering of nanopowders,” Combust., Expl., Shock Waves, 43, No. 2, 225–232 (2007).

    Article  Google Scholar 

  19. R. Prümmer and P. Weimar, “Explosive consolidation of nanopowders,” Interceram., 51, No. 6, 394–397 (2002).

    Google Scholar 

  20. A. A. Bukaemskii, “Obtaining new finely disperse materials and investigation of their properties,” Candidate’s Dissertation in Phys. and Math., Krasnoyarsk (1995).

  21. A. A. Bukaemskii, S. S. Avramenko, and L. S. Tarasova, “Ultrafine α-Al2O3. Explosive method of synthesis and properties,” Combust., Expl., Shock Wave, 38, No. 4, 478–483 (2002).

    Article  Google Scholar 

  22. A. A. Bukaemskii, A. G. Beloshapko, and A. P. Puzyr’, “Physicochemical properties of Al2O3 powder produced by explosive synthesis,” Combust., Expl., Shock Wave, 36, No. 5, 660–666 (2000).

    Article  Google Scholar 

  23. A. A. Deribas, Physics of Hardening and Explosive Welding [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  24. V. V. Moskvichev, N. A. Makhutov, A. A. Bukaemskii, E. N. Fedorova, et al., Crack resistance and Mechanical Properties of Structural Materials of Engineering Systems [in Russian], Nauka, Novosibirsk (2002).

    Google Scholar 

  25. R. Collongues, La non-stoechiometrie, Masson, Paris (1971).

    Google Scholar 

  26. N. A. Toropov, N. A. Barzakovskii, V. P. Lapin, N. N. Kurtseva, and A. I. Boikova, Diagrams of State of Silicate Systems: Reference Book [in Russian], Nauka, Leningrad (1970).

    Google Scholar 

  27. I. S. Grigor’ev and E. Z. Meilikhov (eds.), Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  28. A. A. Bukaemskii, L. S. Tarasova, and E. N. Fedorova, “Investigation of specific features of the phase composition and stability of finely disperse Al2O3 produced by explosive synthesis,” Izv. Vyssh. Ucheb. Zaved., Tsvet. Metallurgiya, No. 5, 60–63 (2000).

  29. R. A. Andrievskii, Powder Material Science [in Russian], Metallurgiya, Moscow (1991).

    Google Scholar 

  30. B. G. Adamenko, P. O. Pashkov, and L. N. Tambovtseva, “Effect of shock-wave treatment on phase transformations in alumina,” Poroshk. Metallurg., No. 10, 93–97 (1978).

    Google Scholar 

  31. V. I. Novikov, L. I. Trusov, V. N. Lapovok, and T. P. Geleishvili, “Specific features of the growth of particles of finely disperse powders during sintering,” Poroshk. Metallurg., No. 3, 29–35 (1984).

    Google Scholar 

  32. G. K. Williamson and W. H. Hall, “X-ray line broadening filed aluminium and wolfram,” Acta Metallurgica, No. 1, 22–31 (1953).

    Google Scholar 

  33. S. S. Batsanov, “Shock compression of inorganic materials,” in: Physical Methods of Studying Inorganic Materials [in Russian], Nauka, Moscow (1981), pp. 71–82.

    Google Scholar 

  34. R.W. Heckel amd J. L. Youngblood, “X-Ray line broadening study of explosively shocked MgO and α-Al2O3 powders,” J. Amer. Ceram. Soc., 51, No. 7, 398–401 (1968).

    Article  Google Scholar 

  35. R. Prümmer and G. Ziegler, “Structure and annealing behavior of explosively compacted alumina powder,” Powder Metallurgy Int., 9, No. 1, 11–14 (1977).

    Google Scholar 

  36. V. F. Nesterenko, Pulsed Loading of Heterogeneous Materials [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  37. K. I. Kondo, S. Soga, and A. Sawaoka, “Shock compaction of silicon carbide powder,” J. Mater. Sci., 20, 1033–1048 (1985).

    Article  ADS  Google Scholar 

  38. G. V. Samsonov, A. L. Borisova, T. G. Zhidkova, et al., Physicochemical Properties of Oxides: Handbook [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  39. K. Wefers, “Nomenclature, preparation, and properties of aluminum oxides, oxide hydroxides, and trihydroxides,” in: L. D. Hart (ed.), Alumina Chemicals Science and Technology Handbook, The Amer. Ceram. Soc., Inc. (1990), pp. 13–22.

  40. F. V. Chukhrov (ed.), Minerals: Reference Book [in Russian], Nauka, Moscow (1965). 729–731

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bukaemskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 6, pp. 114–126, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukaemskii, A.A., Fedorova, E.N. Explosive compaction and low-temperature sintering of alumina nanopowders. Combust Explos Shock Waves 44, 717–728 (2008). https://doi.org/10.1007/s10573-008-0108-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0108-8

Key words

Navigation