Skip to main content
Log in

Extremes of Daily Rainfall in West Central Florida

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Annual maxima of daily rainfall data dating from 1901 to 2003 are modeled for fourteen locations in West Central Florida. The generalized extreme value (GEV) distribution is fitted to data from each location. The location parameter of the GEV is formulated as a function of time to adequately describe the extremes of rainfall and to predict their future behavior. We find evidence of non-stationarity in the form of trends for eight of the fourteen locations considered. We quantify the change in extreme rainfall for each location and provide return levels for the years 2010, 2020, 2050 and 2100. We also derive estimates of return levels for daily rainfall and provide a classification of the fourteen locations based on the degree of severity of these estimates. This paper provides the first application of extreme value distributions to rainfall data specifically from Florida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamowski, K. and Bougadis, J.: 2003, ‘Detection of trends in annual extreme rainfal’, Hydrol. Process. 17, 3547–3560.

    Article  Google Scholar 

  • Aronica, G., Cannarozzo, M., and Noto, L.: 2002, ‘Investigating the changes in extreme rainfall series recorded in an urbanised area’, Water Sci Technol 45, 49–54.

    CAS  Google Scholar 

  • Cleveland, W. S.: 1979, ‘Robust locally weighted regression and smoothing scatterplots’, J. Am. Stat. Assoc. 74, 829–836.

    Google Scholar 

  • Cleveland, W. S.: 1981, ‘LOWESS: A program for smoothing scatterplots by robust locally weighted regression’, Am. Stat. 35, 54.

    Google Scholar 

  • Coles, S. G.: 2001, An Introduction to Statistical Modeling of Extreme Values, Springer, New York.

    Google Scholar 

  • Conover, W. J.: 1971, Practical Nonparametric Statistics, Wiley, New York.

    Google Scholar 

  • Crisci, A., Gozzini, B., Meneguzzo, F., Pagliara, S., and Maracchi, G.: 2002, ‘Extreme rainfall in a changing climate: Regional analysis and hydrological implications in Tuscany, Hydrol. Process. 16, 1261–1274.

    Article  Google Scholar 

  • Farago, T. and Katz, R.: 1990, ‘Extremes and design values in climatology’, World Meteorological Organization, WCAP-14, WMO/TD-No. 386.

  • Fisher, R. A. and Tippett, L. H. C.: 1928, Limiting forms of the frequency distribution of the largest or smallest member of a sample’, Proc. Camb. Phil. Soc. 24, 180–290.

    Google Scholar 

  • Galambos, J.: 1987, The Asymptotic Theory of Extreme Order Statistics (2nd ed.), Krieger, Malabar, Fl.

    Google Scholar 

  • Gershunov, A.: 1998, ‘ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability’, J. Clim. 11, 3192–3203.

    Article  Google Scholar 

  • Good, P. I.: 2001, Resampling Methods: A Practical Guide to Data Analysis, Birkhauser, Boston, Cambridge, MA.

    Google Scholar 

  • Gumbel, E. J.: 1958, Statistics of Extremes, Columbia University Press, New York.

    Google Scholar 

  • Haylock, M. and Nicholls, N.: 2000, ‘Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998’, Int. J. Climatol. 20, 1533–1541.

    Article  Google Scholar 

  • Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: 1985, ‘Estimation of the generalized extreme value distribution by the method of probability weighted moments’, Technometrics 27, 251– 261.

    MathSciNet  Google Scholar 

  • Jenkinson, A. F.: 1955, ‘The frequency distribution of the annual maxima (or minima) values of meteorological elements’, Q. J. Royal Meteorol. Soc. 81, 158–171.

    Google Scholar 

  • Kotz, S. and Nadarajah, S.: 2000, Extreme Value Distributions: Theory and Applications, Imperial College Press, London.

    Google Scholar 

  • Koutsoyiannis, D. and Baloutsos, G.: 2000, ‘Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences’, Natural Hazards 22, 29– 48.

    Article  Google Scholar 

  • Nguyen, V. T. V., Nguyen, T. D., and Ashkar, F.: 2002, ‘Regional frequency analysis of extreme rainfalls’, Water Sci. Technol. 45, 75–81.

    CAS  Google Scholar 

  • Pagliara, S., Viti, C., Gozzini, B., Meneguzzo, F., and Crisci, A.: 1998, ‘Uncertainties and trends in extreme rainfall series in Tuscany, Italy: Effects on urban drainage networks design’, Water Sci. Technol. 37, 195–202.

    Article  Google Scholar 

  • Parida, B. P.: 1999, ‘Modelling of Indian summer monsoon rainfall using a four-parameter Kappa distribution’, Int. J. Clim. 19, 1389–1398.

    Article  Google Scholar 

  • Park, J. S. and Jung, H. S.: 2002, ‘Modelling Korean extreme rainfall using a Kappa distribution and maximum likelihood estimate’, Theor. Appl. Climatol. 72, 55–64.

    Article  Google Scholar 

  • Park, J. S., Jung, H. S., Kim, R. S., and Oh, J. H.: 2001, ‘Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution’, Int. J. Clim. 21, 1371–1384.

    Article  Google Scholar 

  • Prescott, P. and Walden, A. T.: 1980, ‘Maximum likelihood estimation of the parameters of the generalized extreme-value distribution’, Biometrika 67, 723–724.

    Google Scholar 

  • Rakhecha, P. R. and Soman, M. K.: 1994, ‘Trends in the annual extreme rainfall events of 1 to 3 days duration over India’, Theor. Appl. Clim. 48, 227–237.

    Article  Google Scholar 

  • Rao, C. R.: 1973, Linear Statistical Inference and Its Applications (2nd ed.), Wiley, New York.

    Google Scholar 

  • Royston, J. P.: 1982, ‘An extension of Shapiro and Wilk’s W test for normality to large samples’, Appl Stat. 31, 115–124.

    Google Scholar 

  • Schmidt, N., Lipp, E. K., Rose, J. B., and Luther, M. E.: 2001, ‘ENSO influences on seasonal rainfall and river discharge in Florida’, J. Clim. 14, 615–628.

    Article  Google Scholar 

  • Segal, M., Pan, Z. T., and Arritt, R. W.: 2002, ‘On the effect of relative timing of diurnal and large-scale forcing on summer extreme rainfall characteristics over the central United States’, Mont. Weather Revi. 130, 1442–1450.

    Article  Google Scholar 

  • Silverman, B. W.: 1986, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

    Google Scholar 

  • Wald, A.: 1943, ‘Tests of statistical hypotheses concerning several parameters when the number of observations is large’, Trans. Am. Math. Soci. 54, 426–483.

    Google Scholar 

  • Withers, C. S. and Nadarajah, S.: 2000, ‘Evidence of trend in return levels for daily rainfall in New Zealand’, J. Hydrol. (NZ) 39, 155–166.

    Google Scholar 

  • Yuan, M. and Duchon, C. E.: 2001, ‘Estimation of daily area-average rainfall in central Florida using arithmetic averaging and kriging’, Phys. Geog. 22, 42–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, S. Extremes of Daily Rainfall in West Central Florida. Climatic Change 69, 325–342 (2005). https://doi.org/10.1007/s10584-005-1812-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-1812-y

Keywords

Navigation