Skip to main content

Advertisement

Log in

How Much Warming are We Committed to and How Much can be Avoided?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper examines different concepts of a ‘warming commitment’ which is often used in various ways to describe or imply that a certain level of warming is irrevocably committed to over time frames such as the next 50 to 100 years, or longer. We review and quantify four different concepts, namely (1) a ‘constant emission warming commitment’, (2) a ‘present forcing warming commitment’, (3) a‘zero emission (geophysical) warming commitment’ and (4) a ‘feasible scenario warming commitment’. While a ‘feasible scenario warming commitment’ is probably the most relevant one for policy making, it depends centrally on key assumptions as to the technical, economic and political feasibility of future greenhouse gas emission reductions. This issue is of direct policy relevance when one considers that the 2002 global mean temperatures were 0.8± 0.2 C above the pre-industrial (1861–1890) mean and the European Union has a stated goal of limiting warming to 2 C above the pre-industrial mean: What is the risk that we are committed to overshoot 2 C? Using a simple climate model (MAGICC) for probabilistic computations based on the conventional IPCC uncertainty range for climate sensitivity (1.5 to 4.5 C), we found that (1) a constant emission scenario is virtually certain to overshoot 2 C with a central estimate of 2.0 C by 2100 (4.2 C by 2400). (2) For the present radiative forcing levels it seems unlikely that 2 C are overshoot. (central warming estimate 1.1 C by 2100 and 1.2 C by 2400 with ∼10% probability of overshooting 2 C). However, the risk of overshooting is increasing rapidly if radiative forcing is stabilized much above 400 ppm CO2 equivalence (1.95 W/m2) in the long-term. (3) From a geophysical point of view, if all human-induced emissions were ceased tomorrow, it seems ‘exceptionally unlikely’ that 2 C will be overshoot (central estimate: 0.7 C by 2100; 0.4 C by 2400). (4) Assuming future emissions according to the lower end of published mitigation scenarios (350 ppm CO2eq to 450 ppm CO2eq) provides the central temperature projections are 1.5 to 2.1 C by 2100 (1.5 to 2.0 C by 2400) with a risk of overshooting 2 C between 10 and 50% by 2100 and 1–32% in equilibrium. Furthermore, we quantify the ‘avoidable warming’ to be 0.16–0.26 C for every 100 GtC of avoided CO2 emissions – based on a range of published mitigation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alley, R. B.: 2003, ‘Palaeoclimatic insights into future climate challenges’, Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 361, 1831–1849.

    Article  Google Scholar 

  • Andronova, N. G. and Schlesinger, M. E.: 2001, ‘Objective estimation of the probability density function for climate sensitivity’, Journal of Geophysical Research-Atmospheres 106, 22605–22611.

    Article  Google Scholar 

  • Archer, D.: 2005, ‘Fate of fossil fuel CO2 in geologic time’, Journal of Geophysical Research-Oceans 110, C09S05, doi: 10.1029/2004JC002625.

  • Archer, D. and Buffett, B.: 2005, ‘Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing’, Geochemistry Geophysics Geosystems 6.

  • Archer, D., Khesghi, H., and Maier-Reimer, E.: 1998, ‘Dynamics of fossil fuel CO2 neutralization by marine CaCO3’, Global Biogeochemical Cycles 12, 259–276.

    Article  Google Scholar 

  • Archer, D., Kheshgi, H. S., and Maier-Reimer, E.: 1997, ‘Multiple timescales for neutralization of fossil fuel CO2’, Geophysical Research Letters 24, 405–408.

    Article  Google Scholar 

  • Azar, C., Lindgren, K., Larson, E., Möllersten, K., and Yand, J.: in press, ‘Carbon capture and storage from fossil fuels and biomass – Costs and potential role in stabilizing the atmosphere’, Climatic Change.

  • Caldeira, K., Jain, A. K., and Hoffert, M. I.: 2003, ‘Climate Sensitivity Uncertainty and the Need for Energy Without CO2 Emission’, Science 299, 2052–2054.

    Article  Google Scholar 

  • Covey, C., Sloan, L. C., and Hoffert, M. I.: 1996, ‘Paleoclimate data constraints on climate sensitivity: The paleocalibration method’, Climatic Change 32, 165–184.

    Article  Google Scholar 

  • Cowling, S. A., Betts, R. A., Cox, P. M., Ettwein, V. J., Jones, C. D., Maslin, M. A., and Spall, S. A.: 2004, ‘Contrasting simulated past and future responses of the Amazonian forest to atmospheric change’, Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359, 539–547.

    Article  Google Scholar 

  • Cox, P. M., Betts, R. A., Collins, M., Harris, P., Huntingford, C., and Jones, C. D.: 2003, ‘Amazon dieback under climate-carbon cycle projections for the 21st century’. UK, Hadley Centre. Tecnhical Note 42

  • Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Projections of Future Climate Change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.

    Google Scholar 

  • Ehhalt, D., Prather, M. J., Dentener, F., Derwent, R. G., Dlugokencky, E., Holland, E., Isaksen, I. S. A., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M.: 2001, ‘Atmospheric Chemistry and Greenhouse Gases’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.

    Google Scholar 

  • European Community: 1996, ‘1939th Council meeting Environment. Council conclusions 8518/96’. Luxembourg.

  • Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. S. P., Parker, D. E., Macadam, I., Jones, P. D., Jones, R. N., Nicholls, N., and Sexton, D. M. H.: 2001, ‘Global temperature change and its uncertainties since 1861’, Geophysical Research Letters 28, 2621–2624.

    Article  Google Scholar 

  • Forest, C. E., Stone, P. H., Sokolov, A., Allen, M. R., and Webster, M. D.: 2002, ‘Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations’, Science 295, 113–117.

    Article  Google Scholar 

  • Foukal, P., North, G., and Wigley, T.: 2004, ‘CLIMATE: A Stellar View on Solar Variations and Climate’, Science 306, 68–69.

    Article  Google Scholar 

  • Graßl, H., Kokott, J., Kulessa, M., Luther, J., Nuscheler, F., Sauerborn, R., Schellnhuber, H.-J., Schubert, R., and Schulze, E.-D.: 2003, ‘Climate Protection Strategies for the 21st Century. Kyoto and Beyond.’ Berlin, German Advisory Council on Global Change (WBGU): 89.

  • Gregory, J. M., Huybrechts, P., and Raper, S. C. B.: 2004, ‘Climatology: Threatened loss of the Greenland ice-sheet’, Nature 428, 616.

    Article  Google Scholar 

  • Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A., and Rayner, N. A.: 2002, ‘An observationally based estimate of the climate sensitivity’, Journal of Climate 15, 3117–3121.

    Article  Google Scholar 

  • Hadley Centre: 2002, ‘Stabilisation and Commitment to Future Climate Change – Scientific Results from the Hadley Centre’. Bracknell, Met Office Hadley Centre: 12 available at www.metoffice.com/research/hadleycentre/pubs/brochures/B2002/global.pdf.

  • Hadley Centre: 2003, ‘Climate Change – Observations and predictions – Recent research on climate change from the Hadley Centre’, Exeter, Met Office Hadley Centre: 16 available at http://www.metoffice.com/research/hadleycentre/pubs/brochures/2003/global.pdf.

  • Hannah, L., Midgley, G. F., Lovejoy, T., Bond, W. J., Bush, M., Lovett, J. C., Scott, D., and Woodward, F. I.: 2002, ‘Conservation of Biodiversity in a Changing Climate’, Conservation Biology 16, 264–268.

    Article  Google Scholar 

  • Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D., and Stone, P.: 1985, ‘Climate Response-Times – Dependence on Climate Sensitivity and Ocean Mixing’, Science 229, 857–859.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, ‘Global warming in the twenty-first century: An alternative scenario’, Proceedings of the National Academy of Sciences of the United States of America 97, 9875–9880.

  • Harvey, L. D. D. and Kaufmann, R. K.: 2002, ‘Simultaneously constraining climate sensitivity and aerosol radiative forcing’, Journal of Climate 15, 2837–2861.

    Article  Google Scholar 

  • Haugan, P. M. and Joos, F.: 2004, ‘Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs’, Geophysical Research Letters 31.

  • Hill, D. C., Allen, M. R., Gillet, N. P., Tett, S. F. B., Stott, P. A., Jones, G. S., Ingram, W. J., and Mitchell, J. F. B.: 2001, ‘Natural and anthropogenic causes of recent climate change’, in India, M. B. and Bonillo, D. L. (eds.), Detecting and Modelling Regional Climate Change, Springer-Verlag, Berlin/Heidelberg, Germany.

    Google Scholar 

  • Hoegh-Guldberg, O.: 1999, ‘Climate change, coral bleaching and the future of the world's coral reefs’, Marine and Freshwater Research 50, 839–866.

    Article  Google Scholar 

  • Hoffert, M. I. and Covey, C.: 1992, ‘Deriving Global Climate Sensitivity from Paleoclimate Reconstructions’, Nature 360, 573–576.

    Article  Google Scholar 

  • IPCC: 2001a, Climate Change 2001: Synthesis Report, Cambridge University Press, Cambridge, UK.

  • IPCC: 2001b, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881.

  • IPCC: 2004, ‘Workshop Report’, Workshop on Climate Sensitivity, IPCC Working Group I Technical Support Unit, École Normale Supérieure, Paris, France, pp. 177.

  • Jones, C., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M. J.: 2003a, ‘Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols’, Geophysical Research Letters 30, 1479–1483.

    Article  Google Scholar 

  • Jones, C. D., Cox, P., and Huntingford, C.: 2003b, ‘Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature’, Tellus Series B-Chemical and Physical Meteorology 55, 642–648.

    Article  Google Scholar 

  • Jones, P. D. and Moberg, A.: 2003, ‘Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001’, Journal of Climate 16, 206–223.

    Article  Google Scholar 

  • Knutti, R., Stocker, T. F., Joos, F., and Plattner, G.-K.: 2002, ‘Constraints on radiative forcing and future climate change from observations and climate model ensembles’, Nature 416, 719–723.

    Article  Google Scholar 

  • Knutti, R., Stocker, T. F., Joos, F., and Plattner, G. K.: 2003, ‘Probabilistic climate change projections using neural networks’, Climate Dynamics 21, 257–272.

    Article  Google Scholar 

  • Lean, J., Beer, J., and Bradley, R. S.: 1995, ‘Reconstruction of solar irradience since 1610: Implications for climate change’, Geophysical Research Letters 22, 3195–3198.

    Article  Google Scholar 

  • Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Letreut, H.: 1990, ‘The Ice-Core Record – Climate Sensitivity and Future Greenhouse Warming’, Nature 347, 139–145.

    Article  Google Scholar 

  • Manabe, S., Stouffer, R. J., Spelman, M. J., and Bryan, K.: 1991, ‘Transient responses of a coupled-ocean atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response’, Journal of Climate 4, 785–818.

    Article  Google Scholar 

  • Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A. X., Buja, L. E., Strand, W. G., and Teng, H. Y.: 2005, ‘How much more global warming and sea level rise?’ Science 307, 1769–1772.

    Article  Google Scholar 

  • Meinshausen, M., Hare, B., Wigley, T. M. L., van Vuuren, D., den Elzen, M. G. J., and Swart, R.: in press, ‘Multi-gas emission pathways to meet climate targets’, Climatic Change 50.

  • Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C., and Powrie, L. W.: 2002, ‘Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot’, Global Ecology and Biogeography 11, 445–452.

    Article  Google Scholar 

  • Morita, T., Nakicenovic, N., and Robinson, J.: 2000, ‘Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES)’, Environmental Economics and Policy Studies 3, 65–88.

    Google Scholar 

  • Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: 2004, ‘Quantification of modelling uncertainties in a large ensemble of climate change simulations’, Nature 430, 768–772.

    Article  Google Scholar 

  • Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: 1998, ‘New estimates of radiative forcing due to well mixed greenhouse gases’, Geophysical Research Letters 25, 2715–2718.

    Article  Google Scholar 

  • Nakicenovic, N. and Riahi, K.: 2003, ‘Model runs with MESSAGE in the Context of the Further Development of the Kyoto-Protocol’. Berlin, WBGU – German Advisory Council on Global Change: 54. Report-No.: WBGU II/2003 available at http://www.wbgu.de/wbgu_sn2003_ex03.pdf

  • Nakicenovic, N. and Swart, R. (eds).: 2000, IPCC Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, United Kingdom, 612.

  • North, G. R. and Wu, Q.: 2001, ‘Detecting Climate Signals Using Space-Time EOF’, Journal of Climate 14, 1839–1863.

    Article  Google Scholar 

  • O'Neill, B. C. and Oppenheimer, M.: 2002, ‘CLIMATE CHANGE: Dangerous Climate Impacts and the Kyoto Protocol’, Science 296, 1971–1972.

    Article  Google Scholar 

  • Oppenheimer, M.: 1998, ‘Global warming and the stability of the West Antarctic Ice Sheet’, Nature 393, 325–332.

    Article  Google Scholar 

  • Oppenheimer, M. and Alley, R. B.: 2004, ‘The West Antarctic Ice Sheet and Long Term Climate Policy’, Climatic Change 64, 1–10.

    Article  Google Scholar 

  • Prentice, I. C., Farquhar, G., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quere, C., Scholes, R. J. and Wallace, D. W. R.: 2001, ‘The Carbon Cycle and Atmospheric Carbon Dioxide’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.

    Google Scholar 

  • Rahmstorf, S.: 1995, ‘Bifurcations of the Atlantic Thermohaline Circulation in Response to Changes in the Hydrological Cycle’, Nature 378, 145–149.

    Article  Google Scholar 

  • Rahmstorf, S.: 1996, ‘On the freshwater forcing and transport of the Atlantic thermohaline circulation’, Climate Dynamics 12, 799–811.

    Article  Google Scholar 

  • Ramanathan, V.: 1988, ‘The Greenhouse Theory of Climate Change – a Test by an Inadvertent Global Experiment’, Science 240, 293–299.

    Article  Google Scholar 

  • Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajiama, T., Shi, G. Y. and Solomon, S.: 2001, ‘Radiative Forcing of Climate Change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.

    Google Scholar 

  • Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2001, ‘Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results’, Climate Dynamics 17, 601–613.

    Article  Google Scholar 

  • Raper, S. C. B., Wigley, T. M. L., and Warrick, R. A.: 1996, ‘Global Sea-level Rise: Past and Future’, in Milliman, J. and Haq, B. U. (eds.), Sea-Level Rise and Coastal Subsidence: Causes, Consequences and Strategies, Kluwer, Dordrecht, Netherlands, pp. 11–45.

    Google Scholar 

  • Renssen, H., Beets, C. J., Fichefet, T., Goosse, H., and Kroon, D.: 2004, ‘Modeling the climate response to a massive methane release from gas hydrates’, Paleoceanography 19.

  • Sato, M., Hansen, J., McCornick, M. P., and Pollack, J. B.: 1993, ‘Stratospheric aerosol optiocal depths’, Geophysical Research Letters 98, 10667–10678.

    Google Scholar 

  • Schmidt, G. A. and Shindell, D. T.: 2003, ‘Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates’, Paleoceanography 18.

  • Schneider von Deimling, T., Held, H., Ganopolski, A., and Rahmstorf, S.: 2004, ‘Climate Sensitivity Range Derived from Large Ensemble Simulations of Glacial Climate Constrained by Proxy Data’, Workshop on Climate Sensitivity, IPCC, Paris, pp. 186.

  • Stocker, T. F. and Wright, D. G.: 1991, ‘Rapid Transitions of the Ocean's Deep Circulation Induced by Changes in Surface Water Fluxes’, 351, 729–732.

  • Stott, P. A., Jones, G. S., and Mitchell, J. F. B.: 2003, ‘Do models underestimate the solar contribution to recent climate change?’ Journal of Climate 16, 4079–4093.

    Article  Google Scholar 

  • Stott, P. A. and Kettleborough, J. A.: 2002, ‘Origins and estimates of uncertainty in predictions of twenty-first century temperature rise’, Nature 416, 723–726.

    Article  Google Scholar 

  • Stouffer, R. J.: 2004, ‘Time Scales of Climate Response’, Journal of Climate 17, 209–217.

    Article  Google Scholar 

  • Stouffer, R. J. and Manabe, S.: 1999, ‘Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase’, Journal of Climate 12, 2224–2237.

    Article  Google Scholar 

  • Streets, D. G., Jiang, K. J., Hu, X. L., Sinton, J. E., Zhang, X. Q., Xu, D. Y., Jacobson, M. Z., and Hansen, J. E.: 2001, ‘Climate change – Recent reductions in China's greenhouse gas emissions’, Science 294, 1835–1837.

    Article  Google Scholar 

  • Swart, R., Mitchell, J., Morita, T., and Raper, S.: 2002, ‘Stabilisation scenarios for climate impact assessment’, Global Environmental Change 12, 155–165.

    Article  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L. and Williams, S. E.: 2004a, ‘Extinction risk from climate change’, Nature 427, 145–148.

    Article  Google Scholar 

  • Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., and Zwally, J.: 2004b, ‘Accelerated Sea-Level Rise from West Antarctica’, Science 306, 255–258.

    Article  Google Scholar 

  • Watterson, I. G.: 2003, ‘Effects of a dynamic ocean on simulated climate sensitivity to greenhouse gases’, Climate Dynamics 21, 197–209.

    Article  Google Scholar 

  • Wetherald, R. T., Stouffer, R. J., and Dixon, K. W.: 2001, ‘Committed warming and its implications for climate change’, Geophysical Research Letters 28, 1535–1538.

    Article  Google Scholar 

  • Wigley, T. M. L.: 1991, ‘Could reducing fossil-fuel emissions cause global warming?’ Nature 349, 503–506.

    Article  Google Scholar 

  • Wigley, T. M. L.: 2000, ‘Stabilization of CO2 concentration levels’, in Wigley, T. M. L. and Schimel, D. (eds.), The Carbon Cycle, Cambridge University Press, Cambridge, UK, pp. 258–276.

    Google Scholar 

  • Wigley, T. M. L.: 2003, ‘MAGICC/SCENGEN 4.1: Technical Manual’. Boulder, Colorado, UCAR – Climate and Global Dynamics Division available at http://www.cgd.ucar.edu/cas/wigley/magicc/index.html.

  • Wigley, T. M. L.: 2005, ‘The climate change commitment’, Science 307, 1766–1769.

    Article  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea level of revised IPCC emissions scenarios’, Nature 357, 293–300.

    Article  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 2001, ‘Interpretation of high projections for global-mean warming’, Science 293, 451–454.

    Article  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 2002, ‘Reasons for larger warming projections in the IPCC Third Assessment Report’, Journal of Climate 15, 2945–2952.

    Google Scholar 

  • Wigley, T. M. L., Smith, S. J., and Prather, M. J.: 2002, ‘Radiative forcing due to reactive gas emissions’, Journal of Climate 15, 2690–2696.

    Article  Google Scholar 

  • Williams, S. E., Bolitho, E. E., and Fox, S.: 2003, ‘Climate change in Australian tropical rainforests: an impending environmental catastrophe’, Proceedings of the Royal Society of London Series B-Biological Sciences 270, 1887–1892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill Hare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, B., Meinshausen, M. How Much Warming are We Committed to and How Much can be Avoided?. Climatic Change 75, 111–149 (2006). https://doi.org/10.1007/s10584-005-9027-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-9027-9

Keywords

Navigation