Skip to main content

Advertisement

Log in

Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Plants and animals are responding to climate warming with predictable changes in distribution and physiology. Ectothermic animals are dependent upon environmental temperature, and their seasonal activity patterns are constrained by temperature. Ectotherms (such as snakes) may alter their activity patterns in concordance with climatic change, and we tested this hypothesis in a Mediterranean region (SE Spain) with the Montpellier snake (Malpolon monspessulanus). Temperature showed an increasing trend of 0.07°C per year in the study area between 1983 and 2004, and activity period in this species increased in concert with annual mean temperature. These snakes had a wider dispersion in activity dates and the annual last record was delayed as years progressed, suggesting that the activity period for this snake has increased over time in response to climatic change. These results were not influenced by the elevation at which samples were taken, and annual variation in the number of snakes recorded, sex-ratio, or precipitation. Therefore, this study reports a definite phenological shift for a reptile in response to climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bart J, Fligner MA, Notz WI (1998) Sampling and statistical methods for behavioral ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Beebee TJC (1995) Amphibian breeding and climate change. Nature 374:219–220

    Article  Google Scholar 

  • Blaustein AR, Belden LK, Olson DH, Green DM, Root TL, Kiesecker JM (2001) Amphibian breeding and climate change. Conserv Biol 15:1804–1809

    Article  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci 98:14509–14511

    Article  Google Scholar 

  • Bull CM, Burzacott D (2002) Changes in climate and in the timing of pairing of the Australian lizard, Tiliqua rugosa: a 15 year study. J Zool 256:383–387

    Article  Google Scholar 

  • Busack SD, Jaksić F (1982) Ecological and historical correlates of Iberian herpetofaunal diversity: an analysis at regional and local levels. J Biogeogr 9:289–302

    Article  Google Scholar 

  • Chamaillé-Jammes S, Massot M, Aragón P, Clobert J (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Chang Biol 12:392–402

    Article  Google Scholar 

  • Cheylan M, Grillet P (2005) Statut passé et actuel du lézart ocellé (Lacerta lepida, Sauriens, Lacertidés) en France. Implication en termes de conservation. Vie Milieu 55:15–30

    Google Scholar 

  • Cody ML (1996) Introduction to long-term community ecological studies. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic, San Diego, pp 1–15

    Chapter  Google Scholar 

  • Feriche M (1998) Ecología de la reproducción de los colúbridos del sureste de la Península Ibérica. PhD thesis, University of Granada, Granada

  • Fitch HS (1987) Collecting and life-history techniques. In: Seigel RA, Collins JT, Novak SS (eds) Snakes, ecology and evolutionary biology. MacMillan, New York, pp 143–164

    Google Scholar 

  • Forchhammer MC, Post E, Stenseth NC (1998) Breeding phenology and climate. Nature 391:29–30

    Article  Google Scholar 

  • Frazer NB, Greene JL, Gibbons JW (1993) Temporal variation in growth rate and age at maturity of male painted turtles, Chrysemys picta. American Midlands Naturalist 130:314–324

    Article  Google Scholar 

  • Gibbons JW, Semlitsch RD (1987) Activity patterns. In: Seigel RA, Collins JT, Novak SS (eds) Snakes, ecology and evolutionary biology. MacMillan, New York, pp 396–421

    Google Scholar 

  • Gibbons JW, Scott DE, Ryan TR, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT (2000) The global decline of reptiles, déjà vu amphibians. BioScience 50:653–666

    Article  Google Scholar 

  • Gibbs JP, Breisch AR (2001) Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conserv Biol 15:1175–1178

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495

    Article  Google Scholar 

  • Huang S, Pollack HN, Shen PY (2000) Temperature trends over the past five centuries reconstructed from bore-hole temperatures. Nature 403:756–758

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already. Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci 97:1630–1633

    Article  Google Scholar 

  • IPCC (1994) Climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Jones PD, Osborne TJ, Briffa KR (2001) The evolution of the climate over the last millennium. Science 292:662–667

    Article  Google Scholar 

  • Junta de Andalucía (2001) Red Medioambiental de Andalucía. Junta de Andalucía, Sevilla

    Google Scholar 

  • Moreno-Rueda G, Pleguezuelos JM (2007) Long-term and short-term effects of temperature on snake detectability in the wild: a case study with Malpolon monspessulanus. Herpetol J 17:204–207

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Peterson CR, Gibson AR, Dorcas ME (1987) Snake thermal ecology: the causes and consequences of body temperature variation. In: Seigel RA, Collins JT, Novak SS (eds) Snakes, ecology and evolutionary biology. MacMillan, New York, pp 241–314

    Google Scholar 

  • Pike DA, Antworth RL, Stiner JC (2006) Earlier nesting contributes to shorter nesting seasons for the loggerhead seaturtle Caretta caretta. J Herpetol 40:91–94

    Article  Google Scholar 

  • Pleguezuelos JM (1998) Malpolon monspessulanus (Hermann, 1804). In: Ramos MA (ed) Fauna Ibérica, volumen 10. Museo Nacional de Ciencias Naturales (CSIC), Madrid, pp 408–427

    Google Scholar 

  • Pough FH, Heiser JR, Janis CM (2004) Vertebrate life. Prentice Hall, New Jersey

    Google Scholar 

  • Przybylo R, Sheldon BC, Merilä J (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69:395–403

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rivas-Martínez S (1981) Les étages bioclimatiques de la végétation de la Péninsule Ibérique. Anales del Jardín Botánico de Madrid 37:251–268

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Chang Biol 6:407–416

    Article  Google Scholar 

  • Schneider SH, Root TL (1998) Climate change. In: Mac MJ, Opler PA, Haecker CEP, Doran PD (eds) Status and trends of the nation’s biological resources, vol 1. US Department of Interior, Reston, pp 89–116

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Stefanescu C, Peñuelas J, Filella I (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Chang Biol 9:1494–1506

    Article  Google Scholar 

  • Tryjanowski P, Rybacki M, Sparks T (2003) Changes in the first spawning dates of common frogs and common toads in western Poland in 1978–2002. Ann Zool Fenn 40:459–464

    Google Scholar 

  • Valverde JA (1967) Estructura de una comunidad de vertebrados mediterráneos. Mogr Cienc Mod CSIC, Madrid

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  • Yezerinac SM, Lougheed SC, Handford P (1992) Measurement error and morphometric studies: statistical power and observer experience. Syst Biol 41:471–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Moreno-Rueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Rueda, G., Pleguezuelos, J.M. & Alaminos, E. Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus . Climatic Change 92, 235–242 (2009). https://doi.org/10.1007/s10584-008-9469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9469-y

Keywords

Navigation