Skip to main content

Advertisement

Log in

Understanding trends and projections of disaster losses and climate change: is vulnerability the missing link?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The recent IPCC-SREX report demonstrated for the first time comprehensively that anthropogenic climate change is modifying weather and climate extremes. The report also documents, what has been long known, that losses from natural disasters, including those linked to weather, have increased strongly over the last decades. Responding to the debate regarding a contribution of anthropogenic climate change to the increased burden from weather-related disasters, the IPCC-SREX finds that such a link cannot be made today, and identifies the key driver behind increases in losses as exposure changes in terms of rising population and capital at risk. Yet, in the presence of many uncertainties and omissions involved in studying trends in losses, the authors of the IPCC report did not exclude a role for climate change. In particular, one key uncertainty identified has been the incomplete consideration of economic vulnerability to natural hazards, defined as the propensity to incur losses in a hazardous event. Focussing on the role of vulnerability in determining today’s and future disaster loss risk, we critically review the literature on loss trends and projections, and provide context by way of a modeling case study of observed and projected losses from riverine flooding in Bangladesh. We find that research has almost exclusively focused on normalizing losses for changes in exposure, yet not for vulnerability, which appears a major gap given the dynamic nature of vulnerability, and documented evidence regarding decreases in vulnerability in many regions. One such region is South Asia, and of particular interest to us is Bangladesh, a country heavily at-risk, but also with substantial expertise regarding risk management, where we are able to show that economic vulnerability has been substantially reduced over the last decades. In order to understand future flood risk in Bangladesh, we project risk based on past reductions in vulnerability and compare it to a case where vulnerability is not considered explicitly and kept static. In the dynamic scenario, risk would still increase in absolute terms, yet at much smaller increments compared to a static vulnerability case. Thus, a key finding of our analysis is that, absent dynamic quantifications of vulnerability, studies on future losses under climatic change may overestimate future losses. Furthermore, the analysis also suggests that there are substantial benefits to gain by supporting vulnerability-reducing measures in many regions. Finally, we emphasize the need for further taking a risk-based perspective on modelling climate impacts in order to provide robust information on the costs and impacts from extremes in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Global Environmental Change 15:77–86

    Article  Google Scholar 

  • Agrawala S, Bosello F, Carraro C, de Cian E, Lanzi E (2011) Adapting to Climate Change: Costs, Benefits, and Modelling Approaches. International Review of Environmental and Resource Economics 5:245–284

    Article  Google Scholar 

  • Amendola, A., Ermolieva, T., Linnerooth-Bayer, Mechler, R. (eds.) (2013). Integrated Catastrophe Risk Modeling. Supporting Policy Processes. Springer, Heidelberg

  • Birkmann, J. (2013) (ed.). Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies. United Nations University Press, Tokyo.

  • Bouwer LM (2011a) Have disaster losses increased due to anthropogenic climate change? Bulletin of the American Meteorological Society 92:39–46

    Article  Google Scholar 

  • Bouwer LM (2011b) Reply to comments on “Have disaster losses increased due to anthropogenic climate change?”. Bulletin of the American Meteorological Society 92:792–793

    Article  Google Scholar 

  • Bouwer LM (2013) Projections of future extreme weather losses under changes in climate and exposure. Risk Analysis 33(5):915–930

    Article  Google Scholar 

  • Bouwer LM, Botzen WJW (2011) How sensitive are US hurricane damages to climate? Comment on a paper by W.D. Nordhaus. Climate Change Economics 1(2):1–7

    Article  Google Scholar 

  • Bouwer LM, Crompton RP, Faust E, Höppe P, Pielke RA Jr (2007) Confronting disaster losses. Science 318:753

    Article  Google Scholar 

  • Burton I, Kates R, White G (1978) Environment as hazard. Oxford University Press, New York

    Google Scholar 

  • CRED (2013) EM-DAT: International Disaster Database, Centre for Research on the Epidemiology of Disasters. Université Catholique de Louvain, Belgium

    Google Scholar 

  • Crompton RP, McAneney KJ (2008) Normalised Australian insured losses from meteorological hazards: 1967–2006. Environmental Science and Policy 11:371–378

    Article  Google Scholar 

  • ECLAC (2003) Handbook for Estimating the Socio-economic and Environmental Effects of Disasters. ECLAC, Mexico City

    Google Scholar 

  • Füssel HM, Klein RJT (2006) Climate change vulnerability assessments: an evolution of conceptual thinking. Climatic Change 75(3):301–329

    Article  Google Scholar 

  • Gall M, Borden KA, Cutter SL (2009) When do losses count? Six fallacies of natural hazards loss data. Bulletin of the American Meteorological Society 90:799–809

    Article  Google Scholar 

  • Grossi P, Kunreuther H (eds) (2005) Catastrophe Modeling: A New Approach to Managing Risk. Springer, New York

    Google Scholar 

  • Handmer, J., Y. Honda, Z.W. Kundzewicz, N. Arnell, G. Benito, J. Hatfield, I.F. Mohamed, P. Peduzzi, S. Wu, B. Sherstyukov, K. Takahashi, and Z. Yan (2012). Changes in impacts of climate extremes: human systems and ecosystems. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, 231–290.

  • Hinkel J (2011) Indicators of vulnerability and adaptive capacity” Towards a clarification of the science-policy interface. Global Environmental Change 21:198–208

    Article  Google Scholar 

  • Huggel C, Stone D, Aufhammer M, Hansen G (2013) Loss and damage attribution. Nature Climate Change 3:694–696

    Article  Google Scholar 

  • IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Field C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.). Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013). Climate Change 2013. The Physical Science Basis. Summary for Policymakers. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. et al. 2013).

  • Jonkman SN (2005) Global perspectives on loss of human life caused by floods. Natural Hazards 34:151–175

    Article  Google Scholar 

  • Kellenberg D, Mobarak A (2011) The Economics of Natural Disasters. Annual Review of Resource Economics 3(1):297–312

    Article  Google Scholar 

  • Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, and S. Myeong (2012). Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B. et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, 25–64

  • Nicholls N (2011) Comment on “Have disaster losses increased due to anthropogenic climate change?”. Bulletin of the American Meteorological Society 92:791

    Article  Google Scholar 

  • Nicholls, N., and S.I. Seneviratne (2013). Comparing IPCC Assessments: How do the AR4 and SREX assessments of changes in extremes differ? Climatic Change, in press.

  • Pielke RA Jr, Landsea CW (1999) La Niña, El Niño, and Atlantic hurricane damages in the United States. Bulletin of the American Meteorological Society 80:2027–2033

    Article  Google Scholar 

  • Pielke RA Jr, Sarewitz D (2005) Bringing Society Back into the Climate Debate. Population and Environment 26(3):255–268

    Article  Google Scholar 

  • Pielke RA Jr, Agrawala S, Bouwer LM, Burton I, Changnon S, Glantz MH, Hooke WH, Klein RJT, Kunkel K, Mileti D, Sarewitz D, Tompkins EL, Stehr N, Von Storch H (2005) Clarifying the attribution of recent disaster losses: a response to Epstein and McCarthy. Bulletin of the American Meteorological Society 86(10):1481–1483

    Article  Google Scholar 

  • Pielke RA Jr, Gratz J, Landsea CW, Collins D, Saunders M, Musulin R (2008) Normalized hurricane damages in the United States: 1900–2005. Natural Hazards Review 9:29–42

    Article  Google Scholar 

  • Re M (2011) TOPICS GEO, Natural catastrophes 2010, Analyses, assessments, positions. Munich Reinsurance Company, Munich, Germany

    Google Scholar 

  • Re M (2012) TOPICS GEO, Natural catastrophes 2011, Analyses, assessments, positions. Munich Reinsurance Company, Munich

    Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  Google Scholar 

  • Tanner TM, Hassan A, Islam KMN, Conway D, Mechler R, Ahmed AU, Alam M (2007) ORCHID: Piloting Climate Risk Screening in DFID Bangladesh. Institute of Development Studies, University of Sussex, UK, Detailed Research Report

    Google Scholar 

  • UNESCAP and UNISDR (2012). Reducing Vulnerability and Exposure to Disasters. The Asia-Pacific Disaster Report 2012. UNESCAP and UNISDR, Bangkok

  • UNISDR (2009) Applying disaster risk reduction for climate change adaptation: country practices and lessons. United Nations International Strategy for Disaster Reduction, Geneva

    Google Scholar 

  • UNISDR (2011) Revealing risk, redefining development. Global Assessment Report on Disaster Risk Reduction (GAR). United Nations International Strategy for Disaster Reduction, Geneva.

  • Visser H, Petersen AC (2012) Inferences on weather extremes and weather-related disasters: a review of statistical methods. Climate of the Past 8:265–286

    Article  Google Scholar 

  • World B (2010) Economics of Adaptation to Climate Change. Synthesis report. World Bank, Washington DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Mechler.

Additional information

This article is part of a Special Issue on "Advancing Climate Change Adaptation and Risk Management" edited by Joern Birkmann and Reinhard Mechler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechler, R., Bouwer, L.M. Understanding trends and projections of disaster losses and climate change: is vulnerability the missing link?. Climatic Change 133, 23–35 (2015). https://doi.org/10.1007/s10584-014-1141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-014-1141-0

Keywords

Navigation