Skip to main content
Log in

Boundary value problems and layer potentials on manifolds with cylindrical ends

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the method of layer potentials for manifolds with boundary and cylindrical ends. The fact that the boundary is non-compact prevents us from using the standard characterization of Fredholm or compact pseudo-differential operators between Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis [10] and Kral-Wedland [18]. We first study the layer potentials depending on a parameter on compact manifolds. This then yields the invertibility of the relevant boundary integral operators in the global, non-compact setting. As an application, we prove a well-posedness result for the non-homogeneous Dirichlet problem on manifolds with boundary and cylindrical ends. We also prove the existence of the Dirichlet-to-Neumann map, which we show to be a pseudodifferential operator in the calculus of pseudodifferential operators that are “almost translation invariant at infinity.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ammann, A. Ionescu and V. Nistor: Sobolev spaces on Lie manifolds and regularity for polyhedral domains. Documenta Mathematica 11 (2006), 161–206 (electronic).

    MATH  MathSciNet  Google Scholar 

  2. B. Ammann, R. Lauter, V. Nistor and A. Vasy: Complex powers and non-compact manifolds. Comm. Partial Differential Equations 29 (2004), 671–705.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Ammann, R. Lauter and V. Nistor: Pseudodifferential operators on manifolds with a Lie structure at infinity. Annals of Math. 165 (2007), 717–747.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Arnold and W. Wendland: Collocation versus Galerkin procedures for boundary integral methods, In Boundary element methods in engineering. Springer, Berlin, 1982, pp. 18–33.

    Google Scholar 

  5. D. Arnold, I. Babuška and J. Osborn: Finite element methods: principles for their selection. Comput. Mthods Appl. Mech. Engrg. 45 (1984), 57–96.

    Article  MATH  Google Scholar 

  6. C. Bacuta, V. Nistor and L. Zikatanov: Improving the convergence of ‘high order finite elements’ on polygons and domains with cusps. Numerische Mathematik 100 (2005), 165–184.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Coriasco, E. Schrohe and J. Seiler: Differential operators on conic manifolds: Maximal regularity and parabolic equations, preprint.

  8. B. Dahlberg and C. Kenig: Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Annals of Math. 125 (1987), 437–465.

    Article  MathSciNet  Google Scholar 

  9. A. Erkip and E. Schrohe: Normal solvability of elliptic boundary value problems on asymptotically flat manifolds. J. Funct. Anal. 109 (1992), 22–51.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. B. Fabes, M. Jodeit and J. E. Lewis: Double layer potentials for domains with corners and edges. Indiana Univ. Math. J. 26 (1977), 95–114.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. B. Fabes, M. Jodeit and J. E. Lewis: On the spectra of a Hardy kernel. J. Funct. Anal 21 (1976), 187–194.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Fabes, M. Jodeit and N. Riviere: Potential techniques for boundary value problems on C 1 domains. Acta Math. 141 (1978), 165–186.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Gill and G. Mendoza: Adjoints of elliptic cone operators. Amer. J. Math. 125 (2003), 357–408.

    Article  MathSciNet  Google Scholar 

  14. G. Grubb: Functional calculus of pseudodifferential boundary value problems. Second edition. Progress in Mathematics 65, Birkhäuser, Boston, 1996.

    Google Scholar 

  15. W. V. D. Hodge: The Theory and Applications of Harmonic Integrals. Cambridge University Press, 1941.

  16. T. Angell, R. Kleinman and J. Král: Layer potentials on boundaries with corners and edges. Časopis Pěst. Mat. 113 (1988), 387–402.

    MATH  Google Scholar 

  17. J. Král: Potential theory-surveys and problems. Lecture Notes in Mathematics, 1344, Proceedings of the Conference on Potential Theory held in Prague, Král, J. and Lukeš, J. and Netuka, I. and Veselý, J. Eds., Springer, Berlin, 1988.

    Google Scholar 

  18. J. Král and W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Apl. Mat. 31 (1986), 293–308.

    MATH  MathSciNet  Google Scholar 

  19. J. Král: Integral operators in potential theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  20. K. Kodaira: Harmonic fields in Riemannian manifolds (Generalized potential theory). Annals of Math. 50 (1949), 587–665.

    Article  MathSciNet  Google Scholar 

  21. J. J. Kohn and D. C. Spencer: Complex Neumann problems. Annals of Math. 66 (1957), 89–140.

    Article  MathSciNet  Google Scholar 

  22. V. A. Kondratiev: Boundary value problems for elliptic equations in domains with conical or angular points. Transl. Moscow Math. Soc. 16 (1967), 227–313.

    Google Scholar 

  23. V. A. Kozlov, V. G. Mazya and J. Rossmann: Spectral problems associated with corner singularities of solutions of elliptic equations. Mathematical Surveys and Monographs 85, AMS, Providence, RI, 2001.

    Google Scholar 

  24. R. Lauter, B. Monthubert and V. Nistor: Pseudodifferential analysis on continuous family groupoids. Documenta Math. (2000), 625–655 (electronic).

  25. R. Lauter and S. Moroianu: Fredholm theory for degenerate pseudodifferential operators on manifolds with fibered boundaries. Commun. Partial Differ. Equations 26 (2001), 233–283.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Lewis and C. Parenti: Pseudodifferential operators of Mellin type. Comm. Part. Diff. Eq. 8 (1983), 477–544.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Loya and J. Park: Boundary problems for Dirac type operators on manifolds with multi-cylindrical end boundaries. Ann. Global Anal. Geom. 3 (2006), 337–383.

    MathSciNet  Google Scholar 

  28. R. B. Melrose: The Atiyah-Patodi-Singer index theorem. Research Notes in Mathematics 4, A. K. Peters, Ltd., MA, 1993.

    Google Scholar 

  29. R. B. Melrose: Geometric scattering theory. Stanford Lectures, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  30. R. B. Melrose and G. Mendoza: Elliptic operators of totally characteristic type. MSRI Preprint, 1983.

  31. R. B. Melrose and V. Nistor: K-Theory of C*-algebras of b-pseudodifferential operators. Geom. Funct. Anal. 8 (1998), 99–122.

    Article  MathSciNet  Google Scholar 

  32. M. Mitrea and V. Nistor: A note on boundary value problems on manifolds with cylindrical ends. In Aspects of boundary problems in analysis and geometry, Birkhäuser, Basel, 2004, pp. 472–494.

    Google Scholar 

  33. M. Mitrea and M. E. Taylor: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163 (1999), 181–251.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Mitrea and M. E. Taylor: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176 (2000), 1–79.

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Mitrea, M. Mitrea and M. Taylor: Layer potentials, the Hodge Laplacian and global boundary problems in non-smooth Riemannian manifolds. Memoirs of the Amer. Math. Soc. 150, 2001.

  36. J. Nečas: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Paris, 1967.

  37. V. Nistor: Pseudodifferential opearators on non-compact manifolds and analysis on polyhedral domains. Proceedings of the Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Roskilde University, Contemporary Mathematics, AMS, Rhode Island, 2005, pp. 307–328.

    Google Scholar 

  38. M. Reed and B. Simon: Methods of modern mathematical physics. I, second edition, Academic Press Inc., New York, 1980.

    MATH  Google Scholar 

  39. M. Schechter: Principles of functional analysis. Graduate Studies in Mathematics 36, second edition, AMS, Providence, RI, 2002.

    Google Scholar 

  40. E. Schrohe: Spectral invariance, ellipticity and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces. Ann. Global Anal. and Geometry 10 (1992), 237–254.

    Article  MATH  MathSciNet  Google Scholar 

  41. E. Schrohe: Fréchet algebra technique for boundary value problems on noncompact manifolds: Fredholm criteria and functional calculus via spectral invariance. Math. Nach. (1999), 145–185.

  42. E. Schrohe and B.-W. Schulze: Boundary Value Problems in Boutet de Monvel’s Algebra for Manifolds with Conical Singularities II. Boundary value problems, Schrödinger operators, deformation quantization, Math. Top. 8, Akademie Verlag, Berlin, 1995, pp. 70–205.

    Google Scholar 

  43. E. Schrohe and J. Seiler: Ellipticity and invertibility in the cone algebra on L p -Sobolev spaces. Integr. Equat. Oper. Theory 41 (2001), 93–114.

    Article  MATH  MathSciNet  Google Scholar 

  44. B.-W. Schulze: Boundary value problems and singular pseudo-differential operators. John Wiley & Sons, Chichester-New York-Weinheim, 1998.

    MATH  Google Scholar 

  45. M. A. Shubin: Pseudodifferential operators and spectral theory. Springer Verlag, Berlin-Heidelberg-New York, 1987.

    MATH  Google Scholar 

  46. M. A. Shubin: Spectral theory of elliptic operators on non-compact manifolds. Astérisque 207 (1992), 35–108.

    MathSciNet  Google Scholar 

  47. M. E. Taylor: Pseudodifferential operators. Princeton Mathematical Series 34, Princeton University Press, Princeton, N.J., 1981.

    Google Scholar 

  48. M. E. Taylor: Partial differential equations, Applied Mathematical Sciences, vol. II. Springer-Verlag, New York, 1996.

    Google Scholar 

  49. M. E. Taylor: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81. Amer. Math. Soc., 2000.

  50. G. Verchota: Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59 (1984), 572–611.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Mitrea.

Additional information

Mitrea was partially supported by NSF Grant DMS-0139801 and a UMC Research Board Grant. Nistor was partially supported by NSF Grants DMS-0209497 and DMS-0200808. Manuscripts available from http://www.math.missouri.edu/marius and http://www.math.psu.edu/nistor/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrea, M., Nistor, V. Boundary value problems and layer potentials on manifolds with cylindrical ends. Czech Math J 57, 1151–1197 (2007). https://doi.org/10.1007/s10587-007-0118-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-007-0118-9

Keywords

Navigation